|
import streamlit as st
|
|
from PyPDF2 import PdfReader
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
|
import google.generativeai as genai
|
|
from langchain.vectorstores import FAISS
|
|
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
from langchain.chains.question_answering import load_qa_chain
|
|
from langchain.prompts import PromptTemplate
|
|
from dotenv import load_dotenv
|
|
import os
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
api_key = os.getenv("GOOGLE_API_KEY")
|
|
|
|
|
|
st.set_page_config(page_title="Document Genie", layout="wide")
|
|
|
|
|
|
st.markdown("""
|
|
## Document Genie: Get Instant Insights from Your Documents
|
|
|
|
This chatbot utilizes the Retrieval-Augmented Generation (RAG) framework with Google's Generative AI model Gemini-PRO. It processes uploaded PDF documents by segmenting them into chunks, creating a searchable vector store, and generating precise answers to your questions. This method ensures high-quality, contextually relevant responses for an efficient user experience.
|
|
|
|
### How It Works
|
|
|
|
1. **Upload Your Documents**: You can upload multiple PDF files simultaneously for comprehensive analysis.
|
|
2. **Ask a Question**: After processing the documents, type your question related to the content of your uploaded documents for a detailed answer.
|
|
""")
|
|
|
|
def get_pdf_text(pdf_docs):
|
|
"""
|
|
Extract text from uploaded PDF documents.
|
|
"""
|
|
text = ""
|
|
for pdf in pdf_docs:
|
|
pdf_reader = PdfReader(pdf)
|
|
for page in pdf_reader.pages:
|
|
page_text = page.extract_text()
|
|
if page_text:
|
|
text += page_text
|
|
return text
|
|
|
|
def get_text_chunks(text):
|
|
"""
|
|
Split text into manageable chunks for processing.
|
|
"""
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
|
chunks = text_splitter.split_text(text)
|
|
return chunks
|
|
|
|
def get_vector_store(text_chunks, api_key):
|
|
"""
|
|
Create and save a FAISS vector store from text chunks.
|
|
"""
|
|
try:
|
|
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
|
|
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
|
vector_store.save_local("faiss_index")
|
|
st.success("FAISS index created and saved successfully.")
|
|
except Exception as e:
|
|
st.error(f"Error creating FAISS index: {e}")
|
|
|
|
def get_conversational_chain(api_key):
|
|
"""
|
|
Set up the conversational chain using the Gemini-PRO model.
|
|
"""
|
|
prompt_template = """
|
|
Answer the question as detailed as possible from the provided context. If the answer is not in the provided context,
|
|
say "Answer is not available in the context". Do not provide incorrect information.\n\n
|
|
Context:\n{context}\n
|
|
Question:\n{question}\n
|
|
Answer:
|
|
"""
|
|
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, google_api_key=api_key)
|
|
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
|
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
|
return chain
|
|
|
|
def user_input(user_question, api_key):
|
|
"""
|
|
Handle user input and generate a response from the chatbot.
|
|
"""
|
|
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
|
|
|
|
try:
|
|
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
|
docs = new_db.similarity_search(user_question)
|
|
chain = get_conversational_chain(api_key)
|
|
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
|
|
st.write("Reply:", response["output_text"])
|
|
except ValueError as e:
|
|
st.error(f"Error loading FAISS index or generating response: {e}")
|
|
|
|
def main():
|
|
"""
|
|
Main function to run the Streamlit app.
|
|
"""
|
|
st.header("AI Chatbot π")
|
|
|
|
user_question = st.text_input("Ask a Question from the PDF Files", key="user_question")
|
|
|
|
if user_question:
|
|
user_input(user_question, api_key)
|
|
|
|
with st.sidebar:
|
|
st.title("Menu:")
|
|
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, key="pdf_uploader")
|
|
|
|
if st.button("Submit & Process", key="process_button"):
|
|
if not api_key:
|
|
st.error("Google API key is missing. Please add it to the .env file.")
|
|
return
|
|
|
|
if pdf_docs:
|
|
with st.spinner("Processing..."):
|
|
raw_text = get_pdf_text(pdf_docs)
|
|
text_chunks = get_text_chunks(raw_text)
|
|
get_vector_store(text_chunks, api_key)
|
|
st.success("Processing complete. You can now ask questions based on the uploaded documents.")
|
|
else:
|
|
st.error("No PDF files uploaded. Please upload at least one PDF file to proceed.")
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|