jarif's picture
Update app.py
d153de8 verified
raw
history blame
3.24 kB
import os
import logging
import faiss
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# HuggingFace model checkpoint
checkpoint = "LaMini-T5-738M"
@st.cache_resource
def load_llm():
"""Load the language model for text generation."""
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
pipe = pipeline(
'text2text-generation',
model=model,
tokenizer=tokenizer,
max_length=256,
do_sample=True,
temperature=0.3,
top_p=0.95
)
return HuggingFacePipeline(pipeline=pipe)
def load_faiss_index():
"""Load the FAISS index for vector search."""
index_path = "faiss_index/index.faiss"
if not os.path.exists(index_path):
st.error(f"FAISS index not found at {index_path}. Please ensure the file exists.")
raise RuntimeError(f"FAISS index not found at {index_path}.")
try:
index = faiss.read_index(index_path)
logger.info(f"FAISS index loaded successfully from {index_path}")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
retriever = FAISS(index, embeddings)
return retriever
except Exception as e:
st.error(f"Failed to load FAISS index: {e}")
logger.exception("Exception in load_faiss_index")
raise
def process_answer(instruction):
"""Process the user's question using the QA system."""
try:
retriever = load_faiss_index()
llm = load_llm()
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
generated_text = qa.invoke(instruction)
answer = generated_text['result']
return answer, generated_text
except Exception as e:
st.error(f"An error occurred while processing the answer: {e}")
logger.exception("Exception in process_answer")
return "An error occurred while processing your request.", {}
def main():
"""Main function to run the Streamlit application."""
st.title("Search Your PDF πŸ“šπŸ“")
with st.expander("About the App"):
st.markdown(
"""
This is a Generative AI powered Question and Answering app that responds to questions about your PDF File.
"""
)
question = st.text_area("Enter your Question")
if st.button("Ask"):
st.info("Your Question: " + question)
st.info("Your Answer")
try:
answer, metadata = process_answer(question)
st.write(answer)
st.write(metadata)
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
logger.exception("Unexpected error in main function")
if __name__ == '__main__':
main()