jarif's picture
Update ingest.py
2354330 verified
raw
history blame
1.58 kB
import os
from langchain.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
def create_faiss_index():
try:
# Ensure the 'docs' directory exists and contains files
docs_directory = 'docs'
if not os.path.exists(docs_directory) or not os.listdir(docs_directory):
raise ValueError(f"Directory '{docs_directory}' is empty or does not exist.")
# Load all documents from the 'docs' directory
documents = []
for file in os.listdir(docs_directory):
if file.endswith('.pdf'):
loader = PyPDFLoader(os.path.join(docs_directory, file))
documents.extend(loader.load())
if not documents:
raise ValueError("No valid documents found in the 'docs' directory.")
# Create embeddings using HuggingFace's 'sentence-transformers/all-MiniLM-L6-v2' model
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Create the FAISS vector store index
faiss_index = FAISS.from_documents(documents, embeddings)
# Save the FAISS index locally
index_path = "faiss_index"
os.makedirs(index_path, exist_ok=True)
faiss_index.save_local(index_path)
print("FAISS index created and saved successfully.")
except Exception as e:
print(f"An error occurred during FAISS index creation: {e}")
if __name__ == "__main__":
create_faiss_index()