janrswong commited on
Commit
5ff6b29
1 Parent(s): 15cf0ba

improved tables

Browse files
Files changed (3) hide show
  1. WTI.py +37 -28
  2. __pycache__/WTI.cpython-38.pyc +0 -0
  3. bakwti.py +286 -0
WTI.py CHANGED
@@ -1,3 +1,4 @@
 
1
  from enum import auto
2
  import streamlit as st
3
  import pandas as pd
@@ -125,39 +126,47 @@ def displayWTI():
125
  AgGrid(file, key='dailyMetric', width='100%', fit_columns_on_grid_load=True,
126
  enable_enterprise_modules=True, theme='streamlit', gridOptions=page)
127
 
128
- # # # TABLES
129
- # sss = pd.read_csv('WTI/CopBook1.csv')
130
- # sss = sss.replace(np.nan, '', regex=True)
131
- # sss.rename(columns={'Unnamed: 0': ' '}, inplace=True)
132
-
133
- # def highlight_max(x):
134
- # return ['font-weight: bold' if v == x.loc[0] else ''
135
- # for v in x]
136
- # sss = sss.style.apply(highlight_max)
137
- # st.table(sss)
138
-
139
  # BRENT WTI
140
- st.header("Brent vs. WTI Accuracy Metrics & Best Models")
141
-
142
- arima = Image.open('assets/images/ARIMA2.png')
143
- # st.image(arima, caption='Table of Comparisons: ARIMA',
144
- # use_column_width='auto')
145
-
146
- col1, col2, col3 = st.columns([1, 6, 1])
147
-
148
- with col2:
149
- arima = Image.open('assets/images/ARIMA2.png')
150
- st.image(arima, caption='Table of Comparisons: ARIMA',
151
- use_column_width='auto')
152
- lstm = Image.open('assets/images/LSTM2.png')
153
- st.image(lstm, caption='Table of Comparisons: LSTM',
154
- use_column_width='auto')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
156
  # MODEL OUTPUT TABLE
157
  st.header("Model Output (Close Prices vs. Predicted Prices)")
158
 
159
  interval = st.selectbox("Select Interval:", ('Daily', 'Weekly',
160
- 'Monthly'), key='bestmodels')
161
 
162
  if interval == 'Weekly':
163
  file = pd.read_csv('WTI/BestWTI/bestWeekly.csv')
@@ -179,7 +188,7 @@ def displayWTI():
179
  # Visualization
180
  st.header("Visualization")
181
  fig = px.line(file, x=file["Date"], y=["Close Prices", "ARIMA_50.0_(0, 1, 0)_Predictions",
182
- "ARIMA_60.0_(0, 1, 1)_Predictions", "LSTM_80.0_Predictions"], title="BOTH PREDICTED WTI CRUDE OIL PRICES", width=1000)
183
  st.plotly_chart(fig, use_container_width=True)
184
 
185
  elif interval == 'Daily':
 
1
+ import matplotlib as mpl
2
  from enum import auto
3
  import streamlit as st
4
  import pandas as pd
 
126
  AgGrid(file, key='dailyMetric', width='100%', fit_columns_on_grid_load=True,
127
  enable_enterprise_modules=True, theme='streamlit', gridOptions=page)
128
 
129
+ # TABLES
 
 
 
 
 
 
 
 
 
 
130
  # BRENT WTI
131
+ st.header("Brent vs. WTI Comparison")
132
+ st.subheader('ARIMA Accuracy Metrics & Best Models')
133
+ df2 = pd.DataFrame([[0.8, (0, 1, 0), 2.427, 0.017, 0.8, (0, 1, 0), 5.211, 0.023], [np.nan, np.nan, np.nan, np.nan, 0.5, (0, 1, 0), 9.498, 0.042], [0.5, (1, 0, 0), 9.366, 0.039, 0.500000, (1, 0, 0), 9.530000, 0.042000], [np.nan, np.nan, np.nan, np.nan, 0.500000, (0, 1, 0), 41.668000, 0.097000], [0.600000, (0, 1, 1), 46.308000, 0.091000, 0.600000, (0, 1, 1), 45.242000, 0.099000]], index=pd.Index(
134
+ ['Daily', 'Weekly*', 'Weekly', 'Monthly*', "Monthly"], name='Actual Label:'),
135
+ columns=(["Brent Train Split", "Brent Order", "Brent MSE", "Brent MAPE", "WTI Train Split", "WTI Order", "WTI MSE", "WTI MAPE"]))
136
+
137
+ cell_hover = { # for row hover use <tr> instead of <td>
138
+ 'selector': 'tr:hover',
139
+ 'props': [('background-color', '#ff4c4c')]
140
+ }
141
+
142
+ index_names = {
143
+ 'selector': '.index_name',
144
+ 'props': 'font-style: italic; color: darkgrey; font-weight:normal;'
145
+ }
146
+ headers = {
147
+ 'selector': 'th:not(.index_name)',
148
+ 'props': 'background-color: #f0f2f6; color: black;'
149
+ }
150
+ df2 = df2.style
151
+ df2 = df2.set_table_styles(
152
+ [cell_hover, index_names, headers]).highlight_null(props="color: transparent;")
153
+ st.table(df2)
154
+
155
+ # LSTM
156
+ st.subheader('LSTM Accuracy Metrics & Best Models')
157
+ df3 = pd.DataFrame([[0.6, 4.152, 0.021, 0.8, 5.904, 0.02], [0.8, 21.62, 0.037, 0.8, 25.012, 0.039], [0.8, 56.275, 0.075, 0.8, 80.147, 0.096]], index=pd.Index(
158
+ ['Daily', 'Weekly', "Monthly"], name='Actual Label:'),
159
+ columns=(["Brent Train Split", "Brent MSE", "Brent MAPE", "WTI Train Split", "WTI MSE", "WTI MAPE"]))
160
+ df3 = df3.style
161
+ df3 = df3.set_table_styles(
162
+ [cell_hover, index_names, headers])
163
+ st.table(df3)
164
 
165
  # MODEL OUTPUT TABLE
166
  st.header("Model Output (Close Prices vs. Predicted Prices)")
167
 
168
  interval = st.selectbox("Select Interval:", ('Daily', 'Weekly',
169
+ 'Monthly'), key='bestmodels')
170
 
171
  if interval == 'Weekly':
172
  file = pd.read_csv('WTI/BestWTI/bestWeekly.csv')
 
188
  # Visualization
189
  st.header("Visualization")
190
  fig = px.line(file, x=file["Date"], y=["Close Prices", "ARIMA_50.0_(0, 1, 0)_Predictions",
191
+ "ARIMA_60.0_(0, 1, 1)_Predictions", "LSTM_80.0_Predictions"], title="BOTH PREDICTED WTI CRUDE OIL PRICES", width=1000)
192
  st.plotly_chart(fig, use_container_width=True)
193
 
194
  elif interval == 'Daily':
__pycache__/WTI.cpython-38.pyc CHANGED
Binary files a/__pycache__/WTI.cpython-38.pyc and b/__pycache__/WTI.cpython-38.pyc differ
 
bakwti.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib as mpl
2
+ from enum import auto
3
+ import streamlit as st
4
+ import pandas as pd
5
+ import yfinance as yf
6
+ import matplotlib.pyplot as plt
7
+ # import numpy as np
8
+ import plotly.express as px
9
+ from st_aggrid import GridOptionsBuilder, AgGrid
10
+ import plotly.graph_objects as go
11
+ from PIL import Image
12
+ import numpy as np
13
+
14
+
15
+ def displayWTI():
16
+ st.header("Raw Data")
17
+ # select time interval
18
+ interv = st.select_slider('Select Time Series Data Interval for Prediction', options=[
19
+ 'Daily', 'Weekly', 'Monthly'], value='Weekly')
20
+ # st.write(interv[0])
21
+ # Function to convert time series to interval
22
+
23
+ @st.cache(persist=True, allow_output_mutation=True)
24
+ def getInterval(argument):
25
+ switcher = {
26
+ "W": "WTI/Weekly-WTI.csv",
27
+ "M": "WTI/Monthly-WTI.csv",
28
+ "D": "WTI/Daily-WTI.csv"
29
+ }
30
+ return switcher.get(argument, "WTI/Weekly-WTI.csv")
31
+
32
+ df = pd.read_csv(getInterval(interv[0]))
33
+
34
+ def pagination(df):
35
+ gb = GridOptionsBuilder.from_dataframe(df)
36
+ gb.configure_pagination(paginationAutoPageSize=True)
37
+ return gb.build()
38
+
39
+ page = pagination(df)
40
+ st.table(df.head())
41
+ # download full data
42
+
43
+ @st.cache
44
+ def convert_df(df):
45
+ # IMPORTANT: Cache the conversion to prevent computation on every rerun
46
+ return df.to_csv().encode('utf-8')
47
+
48
+ csv = convert_df(df)
49
+
50
+ st.download_button(
51
+ label="Download data as CSV",
52
+ data=csv,
53
+ file_name='WTI Oil Prices.csv',
54
+ mime='text/csv',
55
+ )
56
+
57
+ # st.header("Standard Deviation of Raw Data")
58
+ # sd = pd.read_csv('StandardDeviation.csv')
59
+ # sd.drop("Unnamed: 0", axis=1, inplace=True)
60
+ # # sd = sd.reset_index()
61
+ # AgGrid(sd, key='SD1', enable_enterprise_modules=True,
62
+ # fit_columns_on_grid_load=True, theme='streamlit')
63
+ # st.write("Note: All entries end on 2022-06-30.")
64
+
65
+ # sd = sd.pivot(index='Start Date', columns='Interval',
66
+ # values='Standard Deviation')
67
+ # sd = sd.reset_index()
68
+ # # visualization
69
+ # fig = px.line(sd, x=sd.index, y=['1d', '1wk', '1mo', '3mo'],
70
+ # title="STANDARD DEVIATION OF BRENT CRUDE OIL PRICES", width=1000)
71
+ # st.plotly_chart(fig, use_container_width=True)
72
+
73
+ # accuracy metrics
74
+ st.header("Accuracy Metric Comparison")
75
+ intervals = st.selectbox(
76
+ "Select Interval:", ('Daily', 'Weekly', 'Monthly'), key='metricKey')
77
+ with st.container():
78
+ col1, col2 = st.columns(2)
79
+
80
+ # LSTM METRICS
81
+ # st.write("LSTM Metrics")
82
+
83
+ readfile = pd.read_csv('WTI/LSTM.csv')
84
+ # readfile = readfile[readfile['Interval'] == intervals.upper()]
85
+ readfile = readfile[readfile['Interval']
86
+ == st.session_state.metricKey.upper()]
87
+ # readfile[readfile['Interval'] == intervals.upper()]
88
+ # readfile = updatefile(readfile)
89
+ readfile.drop("Unnamed: 0", axis=1, inplace=True)
90
+ with col1:
91
+ st.write("LSTM Metrics")
92
+ AgGrid(readfile, key=st.session_state.metricKey, fit_columns_on_grid_load=True,
93
+ enable_enterprise_modules=True, theme='streamlit')
94
+
95
+ # st.write(st.session_state.metricKey)
96
+
97
+ # ARIMA METRICS
98
+ # st.write("ARIMA Metrics")
99
+ # intervals = st.selectbox(
100
+ # "Select Interval:", ('Weekly', 'Monthly', 'Quarterly', 'Daily'))
101
+
102
+ if intervals == 'Weekly':
103
+ file = pd.read_csv('WTI/ARIMAMetrics/ARIMA-WEEKLY.csv')
104
+ file.drop("Unnamed: 0", axis=1, inplace=True)
105
+ page = pagination(file)
106
+ with col2:
107
+ st.write("ARIMA Metrics")
108
+ AgGrid(file, width='100%', theme='streamlit', enable_enterprise_modules=True,
109
+ fit_columns_on_grid_load=True, key='weeklyMetric', gridOptions=page)
110
+
111
+ elif intervals == 'Monthly':
112
+ file = pd.read_csv('WTI/ARIMAMetrics/ARIMA-MONTHLY.csv')
113
+ file.drop("Unnamed: 0", axis=1, inplace=True)
114
+ page = pagination(file)
115
+ with col2:
116
+ st.write("ARIMA Metrics")
117
+ AgGrid(file, key='monthlyMetric', fit_columns_on_grid_load=True,
118
+ enable_enterprise_modules=True, theme='streamlit', gridOptions=page)
119
+
120
+ elif intervals == 'Daily':
121
+ file = pd.read_csv('WTI/ARIMAMetrics/ARIMA-DAILY.csv')
122
+ file.drop("Unnamed: 0", axis=1, inplace=True)
123
+ page = pagination(file)
124
+ with col2:
125
+ st.write("ARIMA Metrics")
126
+ AgGrid(file, key='dailyMetric', width='100%', fit_columns_on_grid_load=True,
127
+ enable_enterprise_modules=True, theme='streamlit', gridOptions=page)
128
+
129
+ # TABLES
130
+ df2 = pd.DataFrame([[0.8, (0, 1, 0), 2.427, 0.017, 0.8, (0, 1, 0), 5.211, 0.023], [np.nan, np.nan, np.nan, np.nan, 0.5, (0, 1, 0), 9.498, 0.042], [0.5, (1, 0, 0), 9.366, 0.039, 0.500000, (1, 0, 0), 9.530000, 0.042000], [np.nan, np.nan, np.nan, np.nan, 0.500000, (0, 1, 0), 41.668000, 0.097000], [0.600000, (0, 1, 1), 46.308000, 0.091000, 0.600000, (0, 1, 1), 45.242000, 0.099000]], index=pd.Index(
131
+ ['Daily', 'Weekly*', 'Weekly', 'Monthly*', "Monthly"], name='Actual Label:'),
132
+ # columns=pd.MultiIndex.from_product([['Brent', 'WTI'], ['Train Split', 'Order', 'MSE', 'MAPE']], names=['Model:', 'Predicted:']))
133
+ # columns=pd.MultiIndex.from_tuples([("Brent", "Train Split"), ("Brent", "Order"), ("Brent", "MSE"), ("Brent", "MAPE"),
134
+ # ("WTI ", "Train Split"), ("WTI", "Order"), ("WTI", "MSE"), ("WTI", "MAPE")]))
135
+ columns=(["Brent Train Split", "Brent Order", "Brent MSE", "Brent MAPE", "WTI Train Split", "WTI Order", "WTI MSE", "WTI MAPE"]))
136
+
137
+ # df2 = pd.DataFrame([[0.8, (0, 1, 0), 2.427, 0.017, 0.8, (0, 1, 0), 5.211, 0.023], [0.5, (1, 0, 0), 9.366, 0.039, 0.5, (0, 1, 0), 9.498, 0.042], [np.nan, np.nan, np.nan, np.nan, 0.5, (0, 1, 0), 9.498, 0.042], [0.5, (1, 0, 0), 9.366, 0.039, 0.5, (0, 1, 0), 9.498, 0.042]], index=pd.Index(
138
+ # ['Daily', 'Weekly', '', 'Monthly'], name='Actual Label:'),
139
+ # columns=pd.MultiIndex.from_product([['', '1'], ['Train Split', 'Order', 'MSE', 'MAPE']], names=['Model:', 'Predicted:']))
140
+ st.table(df2)
141
+ # multi_index = pd.MultiIndex.from_tuples(
142
+ # [('Daily'), ('Weekly'), ('Hello World'), ('Monthly')], names=['Courses', 'Courses1', 'Courses2', 'Courses3'])
143
+ # col = pd.MultiIndex.from_tuples([("Brent", "Train Split"), ("Brent", "Order"), ("Brent", "MSE"), (
144
+ # "Brent", "MAPE"), ("WTI ", "Train Split"), ("WTI", "Order"), ("WTI", "MSE"), ("WTI", "MAPE")])
145
+ # data = [[0.8, (0, 1, 0), 2.427, 0.017, 0.8, (0, 1, 0), 5.211, 0.023], [0.5, (1, 0, 0), 9.366, 0.039, 0.5, (0, 1, 0), 9.498, 0.042], [
146
+ # 0, 0, 0, 0, 0.5, (0, 1, 0), 9.498, 0.042], [0.5, (1, 0, 0), 9.366, 0.039, 0.5, (0, 1, 0), 9.498, 0.042]]
147
+ # df2 = pd.DataFrame(data, columns=col, index=multi_index)
148
+
149
+ # multi_index = pd.MultiIndex.from_tuples([("r0", "rA"),
150
+ # ("r1", "rB")],
151
+ # names=['Courses', 'Fee'])
152
+ # cols = pd.MultiIndex.from_tuples([("Gasoline", "Toyoto"),
153
+ # ("Gasoline", "Ford"),
154
+ # ("Electric", "Tesla"),
155
+ # ("Electric", "Nio")])
156
+ # data = [[100, 300, 900, 400], [200, 500, 300, 600]]
157
+
158
+ # df2 = pd.DataFrame(data, columns=cols, index=multi_index)
159
+
160
+ cell_hover = { # for row hover use <tr> instead of <td>
161
+ 'selector': 'tr:hover',
162
+ 'props': [('background-color', '#ff4c4c')]
163
+ }
164
+
165
+ index_names = {
166
+ 'selector': '.index_name',
167
+ 'props': 'font-style: italic; color: darkgrey; font-weight:normal;'
168
+ }
169
+ headers = {
170
+ # 'selector': 'th:not(.index_name)',
171
+ 'selector': 'th:not(.index_name)',
172
+ 'props': 'background-color: #f0f2f6; color: black;'
173
+ }
174
+ df2 = df2.style
175
+ df2 = df2.set_table_styles(
176
+ [cell_hover, index_names, headers]).highlight_null(props="color: transparent;")
177
+ df2 = df2.set_table_styles([
178
+ {'selector': 'th.col_heading', 'props': 'text-align: center;'},
179
+ {'selector': 'th.col_heading.level0', 'props': 'font-size: 1em;'},
180
+ {'selector': 'td', 'props': 'text-align: center; font-weight: bold;'},
181
+ ], overwrite=False)
182
+ # df2 = df2.replace(np.nan, '', regex=True)
183
+ st.table(df2)
184
+
185
+ # st.table(sss)
186
+ sss = pd.read_csv('WTI/CopBook1.csv')
187
+ # sss = sss.replace(np.nan, '', regex=True)
188
+ sss.rename(columns={'Unnamed: 0': ' '}, inplace=True)
189
+ sss.fillna("")
190
+ # sss = sss.style
191
+
192
+ # AgGrid(sss, key='WTI/CopBook1.csv', fit_columns_on_grid_load=True,
193
+ # enable_enterprise_modules=True, theme='streamlit')
194
+ cell_hover = { # for row hover use <tr> instead of <td>
195
+ 'selector': 'td:hover',
196
+ 'props': [('background-color', '#ffffb3')]
197
+ }
198
+
199
+ # sss = sss.style.set_properties(**{'background-color': 'black',
200
+ # 'color': 'green'})
201
+ # sss = sss.style.set_properties(**{'background-color': 'yellow' if v ==
202
+ # sss.loc[0] else "" for v in sss}, axis=1).highlight_null(props="color: transparent;")
203
+
204
+ # sss = sss.style.apply(lambda x: ["background: red" if v ==
205
+ # (x.iloc[1,3]) else "" for v in x], axis=1).highlight_null(props="color: transparent;")
206
+
207
+ # sss = sss.style.apply(lambda x: ["background: red"(
208
+ # (x.iloc[1:3]))]).highlight_null(props="color: transparent;")
209
+
210
+ # sss.style.apply(lambda x: ["background: red" if v ==
211
+ # x.loc[0] else "" for v in x], axis=1)
212
+ sss = sss.style
213
+ sss = sss.set_table_styles(
214
+ [cell_hover, index_names, headers]).highlight_null(props="color: transparent;")
215
+ sss = sss.set_table_styles([
216
+ {'selector': 'th.col_heading', 'props': 'text-align: center;'},
217
+ {'selector': 'th.col_heading.level0', 'props': 'font-size: 1em;'},
218
+ {'selector': 'td', 'props': 'text-align: center; font-weight: bold;'},
219
+ ], overwrite=False)
220
+
221
+ # sss = sss.style.highlight_null(props="color: transparent;")
222
+ # sss = sss.set_table_styles([cell_hover])
223
+
224
+ # def highlight_max(x):
225
+ # return ['font-weight: bold' if v == x.loc[0] else ''
226
+ # for v in x]
227
+ # sss = sss.style.apply(highlight_max)
228
+
229
+ st.table(sss)
230
+
231
+ # BRENT WTI
232
+ st.header("Brent vs. WTI Accuracy Metrics & Best Models")
233
+
234
+ # arima = Image.open('assets/images/ARIMA23.png')
235
+ # st.image(arima, caption='Table of Comparisons: ARIMA',
236
+ # use_column_width='auto')
237
+
238
+ col1, col2, col3 = st.columns([1, 6, 1])
239
+
240
+ with col2:
241
+ arima = Image.open('assets/images/ARIMA3111.png')
242
+ st.image(arima, caption='Table of Comparisons: ARIMA',
243
+ use_column_width='auto')
244
+ lstm = Image.open('assets/images/LSTM2.png')
245
+ st.image(lstm, caption='Table of Comparisons: LSTM',
246
+ use_column_width='auto')
247
+
248
+ # MODEL OUTPUT TABLE
249
+ st.header("Model Output (Close Prices vs. Predicted Prices)")
250
+
251
+ interval = st.selectbox("Select Interval:", ('Daily', 'Weekly',
252
+ 'Monthly'), key='bestmodels')
253
+
254
+ if interval == 'Weekly':
255
+ file = pd.read_csv('WTI/BestWTI/bestWeekly.csv')
256
+ page = pagination(file)
257
+ AgGrid(file, key='weeklycombined', fit_columns_on_grid_load=True,
258
+ enable_enterprise_modules=True, theme='streamlit', gridOptions=page)
259
+
260
+ # Visualization
261
+ st.header("Visualization")
262
+ fig = px.line(file, x=file["Date"], y=["Close Prices", "ARIMA_50.0_(0, 1, 0)_Predictions",
263
+ "ARIMA_50.0_(1, 0, 0)_Predictions", "LSTM_80.0_Predictions"], title="BOTH PREDICTED WTI CRUDE OIL PRICES", width=1000)
264
+ st.plotly_chart(fig, use_container_width=True)
265
+
266
+ elif interval == 'Monthly':
267
+ file = pd.read_csv('WTI/BestWTI/bestMonthly.csv')
268
+ page = pagination(file)
269
+ AgGrid(file, key='monthlyCombined', fit_columns_on_grid_load=True,
270
+ enable_enterprise_modules=True, theme='streamlit', gridOptions=page)
271
+ # Visualization
272
+ st.header("Visualization")
273
+ fig = px.line(file, x=file["Date"], y=["Close Prices", "ARIMA_50.0_(0, 1, 0)_Predictions",
274
+ "ARIMA_60.0_(0, 1, 1)_Predictions", "LSTM_80.0_Predictions"], title="BOTH PREDICTED WTI CRUDE OIL PRICES", width=1000)
275
+ st.plotly_chart(fig, use_container_width=True)
276
+
277
+ elif interval == 'Daily':
278
+ file = pd.read_csv('WTI/BestWTI/bestDaily.csv')
279
+ page = pagination(file)
280
+ AgGrid(file, key='dailyCombined', fit_columns_on_grid_load=True,
281
+ enable_enterprise_modules=True, theme='streamlit', gridOptions=page)
282
+ # Visualization
283
+ st.header("Visualization")
284
+ fig = px.line(file, x=file["Date"], y=["Close Prices", "ARIMA_80.0_(0, 1, 0)_Predictions", # find file
285
+ "LSTM_60.0_DAILY", "LSTM_80.0_DAILY", ], title="BOTH PREDICTED WTI CRUDE OIL PRICES", width=1000)
286
+ st.plotly_chart(fig, use_container_width=True)