|
from transformers import pipeline |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import gradio as gr |
|
from nltk.tokenize import sent_tokenize |
|
import torch |
|
|
|
model = "janny127/autotrain-5e45b-p5z66" |
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
|
|
pipeline = pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
def predict(prompt, history): |
|
|
|
formatted_prompt = ( |
|
f"### Human: {prompt}### Assistant:" |
|
) |
|
|
|
|
|
sequences = pipeline( |
|
formatted_prompt, |
|
do_sample=True, |
|
top_k=50, |
|
top_p = 0.7, |
|
num_return_sequences=1, |
|
repetition_penalty=1.1, |
|
max_new_tokens=500, |
|
) |
|
generated_text = sequences[0]['generated_text'] |
|
|
|
final_result = generated_text.split("### Assistant:")[1] |
|
if " Human: " in final_result: |
|
final_result = final_result.split(" Human: ")[0] |
|
if " #" in final_result: |
|
final_result = final_result.split(" #")[0] |
|
|
|
|
|
return final_result.strip() |
|
|
|
gr.ChatInterface(predict, |
|
title="Tinyllama_chatBot", |
|
description="Ask Tiny llama any questions", |
|
examples=['How to cook a fish?', 'Who is the president of US now?'] |
|
).launch() |
|
|
|
|