jannisborn commited on
Commit
a323836
1 Parent(s): e2df4b3
model_cards/article.md CHANGED
@@ -73,17 +73,16 @@ Described in the [original paper](https://pubs.acs.org/doi/10.1021/acs.jcim.1c00
73
  Model card prototype inspired by [Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)
74
 
75
  ## Citation
 
76
  ```bib
77
- @article{born2022active,
78
- author = {Born, Jannis and Huynh, Tien and Stroobants, Astrid and Cornell, Wendy D. and Manica, Matteo},
79
- title = {Active Site Sequence Representations of Human Kinases Outperform Full Sequence Representations for Affinity Prediction and Inhibitor Generation: 3D Effects in a 1D Model},
80
- journal = {Journal of Chemical Information and Modeling},
81
- volume = {62},
82
- number = {2},
83
- pages = {240-257},
84
- year = {2022},
85
- doi = {10.1021/acs.jcim.1c00889},
86
- note ={PMID: 34905358},
87
- URL = {https://doi.org/10.1021/acs.jcim.1c00889}
88
  }
89
  ```
 
73
  Model card prototype inspired by [Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)
74
 
75
  ## Citation
76
+ If you use this webservice, please cite:
77
  ```bib
78
+ @article{cadow2020paccmann,
79
+ title={PaccMann: a web service for interpretable anticancer compound sensitivity prediction},
80
+ author={Cadow, Joris and Born, Jannis and Manica, Matteo and Oskooei, Ali and Rodr{\'\i}guez Mart{\'\i}nez, Mar{\'\i}a},
81
+ journal={Nucleic acids research},
82
+ volume={48},
83
+ number={W1},
84
+ pages={W502--W508},
85
+ year={2020},
86
+ publisher={Oxford University Press}
 
 
87
  }
88
  ```
model_cards/description.md CHANGED
@@ -1,6 +1,3 @@
1
- <img align="right" src="https://raw.githubusercontent.com/GT4SD/gt4sd-core/main/docs/_static/gt4sd_logo.png" alt="logo" width="120" >
2
 
3
- [PaccMann<sup>GP</sup>](https://github.com/PaccMann/paccmann_gp) is a language-based Variational Autoencoder that is coupled with a GaussianProcess for controlled sampling. For details of the methodology, please see [Born et al., (2022), *Journal of Chemical Information & Modeling*](https://pubs.acs.org/doi/10.1021/acs.jcim.1c00889).
4
-
5
- For **examples** and **documentation** of the model parameters, please see below.
6
- Moreover, we provide a **model card** ([Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)) at the bottom of this page.
 
1
+ <img align="right" src="https://repository-images.githubusercontent.com/219031433/3729c600-fcdc-11e9-9cdf-60c4a2b41700" alt="logo" width="120" >
2
 
3
+ PaccMann is a
 
 
 
model_cards/examples.csv DELETED
@@ -1,3 +0,0 @@
1
- v0|["qed"]||1.2|100|10|4|8|4|1|0.1|3|4|42
2
- v0|["qed","sa"]||1.2|100|10|4|8|4|1|0.1|3|4|42
3
- v0|["affinity"]|MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTT|1.2|100|10|4|8|4|1|0.1|3|4|42
 
 
 
 
model_cards/molecules.smi ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ CCCC1(F)CC1(C)CC
2
+ CCC(O)C(C)C1(F)CC1
3
+ CCOC1CCCC1(C)CC
4
+ CCCCOC(CCC)CCC
5
+ CCC1(F)C2CCC1(F)C2