|
from abc import abstractmethod |
|
import os |
|
from qdrant_client import QdrantClient |
|
from langchain.embeddings import OpenAIEmbeddings, ElasticsearchEmbeddings |
|
from langchain.vectorstores import Qdrant, ElasticVectorSearch, VectorStore |
|
from qdrant_client.models import VectorParams, Distance |
|
|
|
|
|
class ToyVectorStore: |
|
|
|
@staticmethod |
|
def get_instance(): |
|
vector_store = os.getenv("STORE") |
|
if vector_store == "ELASTIC": |
|
return ElasticVectorStore() |
|
elif vector_store == "QDRANT": |
|
return QdrantVectorStore() |
|
else: |
|
raise ValueError(f"Invalid vector store {vector_store}") |
|
|
|
def __init__(self): |
|
self.embeddings = OpenAIEmbeddings() |
|
|
|
@abstractmethod |
|
def get_collection(self, collection: str="test") -> VectorStore: |
|
""" |
|
get an instance of vector store |
|
of collection |
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def create_collection(self, collection: str) -> None: |
|
""" |
|
create an instance of vector store |
|
with collection name |
|
""" |
|
pass |
|
|
|
class ElasticVectorStore(ToyVectorStore): |
|
|
|
def get_collection(self, collection:str) -> ElasticVectorSearch: |
|
return ElasticVectorSearch(elasticsearch_url= os.getenv("ES_URL"), |
|
index_name= collection, embedding=self.embeddings) |
|
|
|
def create_collection(self, collection: str) -> None: |
|
store = self.get_collection(collection) |
|
store.create_index(store.client,collection, dict()) |
|
|
|
|
|
class QdrantVectorStore(ToyVectorStore): |
|
|
|
def __init__(self): |
|
self.client = QdrantClient(url=os.getenv("QDRANT_URL"), |
|
api_key=os.getenv("QDRANT_API_KEY")) |
|
|
|
def get_collection(self, collection: str) -> Qdrant: |
|
return Qdrant(client=self.client,collection_name=collection, |
|
embeddings=self.embeddings) |
|
|
|
def create_collection(self, collection: str) -> None: |
|
self.client.create_collection(collection_name=collection, |
|
vectors_config=VectorParams(size=1536, distance=Distance.COSINE)) |
|
|