Spaces:
Running
on
Zero
Running
on
Zero
bachvudinh
commited on
Commit
•
39cc970
1
Parent(s):
e10af0d
add load model outside a function
Browse files
app.py
CHANGED
@@ -20,6 +20,7 @@ vq_model = RQBottleneckTransformer.load_model(
|
|
20 |
"whisper-vq-stoks-medium-en+pl-fixed.model"
|
21 |
).to(device)
|
22 |
vq_model.ensure_whisper(device)
|
|
|
23 |
@spaces.GPU
|
24 |
def audio_to_sound_tokens_whisperspeech(audio_path):
|
25 |
wav, sr = torchaudio.load(audio_path)
|
@@ -31,6 +32,7 @@ def audio_to_sound_tokens_whisperspeech(audio_path):
|
|
31 |
|
32 |
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
33 |
return f'<|sound_start|>{result}<|sound_end|>'
|
|
|
34 |
@spaces.GPU
|
35 |
def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
|
36 |
wav, sr = torchaudio.load(audio_path)
|
@@ -42,45 +44,28 @@ def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
|
|
42 |
|
43 |
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
44 |
return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>'
|
45 |
-
def audio_to_sound_tokens(audio_path, target_bandwidth=1.5, device="cuda"):
|
46 |
-
model = EncodecModel.encodec_model_24khz()
|
47 |
-
model.set_target_bandwidth(target_bandwidth)
|
48 |
-
model.to(device)
|
49 |
-
|
50 |
-
wav, sr = torchaudio.load(audio_path)
|
51 |
-
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
|
52 |
-
wav = wav.unsqueeze(0).to(device)
|
53 |
-
|
54 |
-
with torch.no_grad():
|
55 |
-
encoded_frames = model.encode(wav)
|
56 |
-
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1)
|
57 |
-
|
58 |
-
audio_code1, audio_code2 = codes[0][0], codes[0][1]
|
59 |
-
flatten_tokens = torch.stack((audio_code1, audio_code2), dim=1).flatten().tolist()
|
60 |
-
result = ''.join(f'<|sound_{num:04d}|>' for num in flatten_tokens)
|
61 |
-
return f'<|sound_start|>{result}<|sound_end|>'
|
62 |
-
@spaces.GPU
|
63 |
-
def setup_pipeline(model_path, use_4bit=False, use_8bit=False):
|
64 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
65 |
-
model_kwargs = {"device_map": "auto"}
|
66 |
-
if use_8bit:
|
67 |
-
model_kwargs["quantization_config"] = BitsAndBytesConfig(
|
68 |
-
load_in_8bit=True,
|
69 |
-
llm_int8_enable_fp32_cpu_offload=False,
|
70 |
-
llm_int8_has_fp16_weight=False,
|
71 |
-
)
|
72 |
-
else:
|
73 |
-
model_kwargs["torch_dtype"] = torch.bfloat16
|
74 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
|
75 |
-
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
76 |
|
77 |
tts = TTSProcessor(device)
|
|
|
78 |
llm_path = "homebrewltd/Llama3.1-s-instruct-2024-08-19-epoch-3"
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
tokenizer = pipe.tokenizer
|
81 |
model = pipe.model
|
82 |
# print(tokenizer.encode("<|sound_0001|>", add_special_tokens=False))# return the audio tensor
|
83 |
# print(tokenizer.eos_token)
|
|
|
|
|
84 |
@spaces.GPU
|
85 |
def text_to_audio_file(text):
|
86 |
# gen a random id for the audio file
|
@@ -96,6 +81,8 @@ def text_to_audio_file(text):
|
|
96 |
# torchaudio.save(temp_file, audio.cpu(), sample_rate=24000)
|
97 |
print(f"Saved audio to {temp_file}")
|
98 |
return temp_file
|
|
|
|
|
99 |
@spaces.GPU
|
100 |
def process_input(input_type, text_input=None, audio_file=None):
|
101 |
# if input_type == "text":
|
@@ -106,6 +93,7 @@ def process_input(input_type, text_input=None, audio_file=None):
|
|
106 |
|
107 |
# if input_type == "text":
|
108 |
# os.remove(audio_file)
|
|
|
109 |
@spaces.GPU
|
110 |
def process_transcribe_input(input_type, text_input=None, audio_file=None):
|
111 |
# if input_type == "text":
|
@@ -124,6 +112,7 @@ class StopOnTokens(StoppingCriteria):
|
|
124 |
if input_ids[0][-1] == stop_id:
|
125 |
return True
|
126 |
return False
|
|
|
127 |
@spaces.GPU
|
128 |
def process_audio(audio_file, transcript=False):
|
129 |
if audio_file is None:
|
|
|
20 |
"whisper-vq-stoks-medium-en+pl-fixed.model"
|
21 |
).to(device)
|
22 |
vq_model.ensure_whisper(device)
|
23 |
+
|
24 |
@spaces.GPU
|
25 |
def audio_to_sound_tokens_whisperspeech(audio_path):
|
26 |
wav, sr = torchaudio.load(audio_path)
|
|
|
32 |
|
33 |
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
34 |
return f'<|sound_start|>{result}<|sound_end|>'
|
35 |
+
|
36 |
@spaces.GPU
|
37 |
def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
|
38 |
wav, sr = torchaudio.load(audio_path)
|
|
|
44 |
|
45 |
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
46 |
return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
tts = TTSProcessor(device)
|
49 |
+
use_8bit = False
|
50 |
llm_path = "homebrewltd/Llama3.1-s-instruct-2024-08-19-epoch-3"
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_path)
|
52 |
+
model_kwargs = {"device_map": "auto"}
|
53 |
+
if use_8bit:
|
54 |
+
model_kwargs["quantization_config"] = BitsAndBytesConfig(
|
55 |
+
load_in_8bit=True,
|
56 |
+
llm_int8_enable_fp32_cpu_offload=False,
|
57 |
+
llm_int8_has_fp16_weight=False,
|
58 |
+
)
|
59 |
+
else:
|
60 |
+
model_kwargs["torch_dtype"] = torch.bfloat16
|
61 |
+
model = AutoModelForCausalLM.from_pretrained(llm_path, **model_kwargs)
|
62 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
63 |
tokenizer = pipe.tokenizer
|
64 |
model = pipe.model
|
65 |
# print(tokenizer.encode("<|sound_0001|>", add_special_tokens=False))# return the audio tensor
|
66 |
# print(tokenizer.eos_token)
|
67 |
+
|
68 |
+
|
69 |
@spaces.GPU
|
70 |
def text_to_audio_file(text):
|
71 |
# gen a random id for the audio file
|
|
|
81 |
# torchaudio.save(temp_file, audio.cpu(), sample_rate=24000)
|
82 |
print(f"Saved audio to {temp_file}")
|
83 |
return temp_file
|
84 |
+
|
85 |
+
|
86 |
@spaces.GPU
|
87 |
def process_input(input_type, text_input=None, audio_file=None):
|
88 |
# if input_type == "text":
|
|
|
93 |
|
94 |
# if input_type == "text":
|
95 |
# os.remove(audio_file)
|
96 |
+
|
97 |
@spaces.GPU
|
98 |
def process_transcribe_input(input_type, text_input=None, audio_file=None):
|
99 |
# if input_type == "text":
|
|
|
112 |
if input_ids[0][-1] == stop_id:
|
113 |
return True
|
114 |
return False
|
115 |
+
|
116 |
@spaces.GPU
|
117 |
def process_audio(audio_file, transcript=False):
|
118 |
if audio_file is None:
|