|
|
|
import torch |
|
from torch import Tensor |
|
from torch.distributions import constraints |
|
from torch.distributions.exp_family import ExponentialFamily |
|
from torch.distributions.utils import broadcast_all |
|
from torch.types import _Number, _size |
|
|
|
|
|
__all__ = ["Exponential"] |
|
|
|
|
|
class Exponential(ExponentialFamily): |
|
r""" |
|
Creates a Exponential distribution parameterized by :attr:`rate`. |
|
|
|
Example:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> m = Exponential(torch.tensor([1.0])) |
|
>>> m.sample() # Exponential distributed with rate=1 |
|
tensor([ 0.1046]) |
|
|
|
Args: |
|
rate (float or Tensor): rate = 1 / scale of the distribution |
|
""" |
|
|
|
arg_constraints = {"rate": constraints.positive} |
|
support = constraints.nonnegative |
|
has_rsample = True |
|
_mean_carrier_measure = 0 |
|
|
|
@property |
|
def mean(self) -> Tensor: |
|
return self.rate.reciprocal() |
|
|
|
@property |
|
def mode(self) -> Tensor: |
|
return torch.zeros_like(self.rate) |
|
|
|
@property |
|
def stddev(self) -> Tensor: |
|
return self.rate.reciprocal() |
|
|
|
@property |
|
def variance(self) -> Tensor: |
|
return self.rate.pow(-2) |
|
|
|
def __init__(self, rate, validate_args=None): |
|
(self.rate,) = broadcast_all(rate) |
|
batch_shape = torch.Size() if isinstance(rate, _Number) else self.rate.size() |
|
super().__init__(batch_shape, validate_args=validate_args) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(Exponential, _instance) |
|
batch_shape = torch.Size(batch_shape) |
|
new.rate = self.rate.expand(batch_shape) |
|
super(Exponential, new).__init__(batch_shape, validate_args=False) |
|
new._validate_args = self._validate_args |
|
return new |
|
|
|
def rsample(self, sample_shape: _size = torch.Size()) -> Tensor: |
|
shape = self._extended_shape(sample_shape) |
|
return self.rate.new(shape).exponential_() / self.rate |
|
|
|
def log_prob(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
return self.rate.log() - self.rate * value |
|
|
|
def cdf(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
return 1 - torch.exp(-self.rate * value) |
|
|
|
def icdf(self, value): |
|
return -torch.log1p(-value) / self.rate |
|
|
|
def entropy(self): |
|
return 1.0 - torch.log(self.rate) |
|
|
|
@property |
|
def _natural_params(self) -> tuple[Tensor]: |
|
return (-self.rate,) |
|
|
|
def _log_normalizer(self, x): |
|
return -torch.log(-x) |
|
|