|
from math import factorial as _factorial, log, prod |
|
from itertools import chain, product |
|
|
|
|
|
from sympy.combinatorics import Permutation |
|
from sympy.combinatorics.permutations import (_af_commutes_with, _af_invert, |
|
_af_rmul, _af_rmuln, _af_pow, Cycle) |
|
from sympy.combinatorics.util import (_check_cycles_alt_sym, |
|
_distribute_gens_by_base, _orbits_transversals_from_bsgs, |
|
_handle_precomputed_bsgs, _base_ordering, _strong_gens_from_distr, |
|
_strip, _strip_af) |
|
from sympy.core import Basic |
|
from sympy.core.random import _randrange, randrange, choice |
|
from sympy.core.symbol import Symbol |
|
from sympy.core.sympify import _sympify |
|
from sympy.functions.combinatorial.factorials import factorial |
|
from sympy.ntheory import primefactors, sieve |
|
from sympy.ntheory.factor_ import (factorint, multiplicity) |
|
from sympy.ntheory.primetest import isprime |
|
from sympy.utilities.iterables import has_variety, is_sequence, uniq |
|
|
|
rmul = Permutation.rmul_with_af |
|
_af_new = Permutation._af_new |
|
|
|
|
|
class PermutationGroup(Basic): |
|
r"""The class defining a Permutation group. |
|
|
|
Explanation |
|
=========== |
|
|
|
``PermutationGroup([p1, p2, ..., pn])`` returns the permutation group |
|
generated by the list of permutations. This group can be supplied |
|
to Polyhedron if one desires to decorate the elements to which the |
|
indices of the permutation refer. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> from sympy.combinatorics import Polyhedron |
|
|
|
The permutations corresponding to motion of the front, right and |
|
bottom face of a $2 \times 2$ Rubik's cube are defined: |
|
|
|
>>> F = Permutation(2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5) |
|
>>> R = Permutation(1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9) |
|
>>> D = Permutation(6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21) |
|
|
|
These are passed as permutations to PermutationGroup: |
|
|
|
>>> G = PermutationGroup(F, R, D) |
|
>>> G.order() |
|
3674160 |
|
|
|
The group can be supplied to a Polyhedron in order to track the |
|
objects being moved. An example involving the $2 \times 2$ Rubik's cube is |
|
given there, but here is a simple demonstration: |
|
|
|
>>> a = Permutation(2, 1) |
|
>>> b = Permutation(1, 0) |
|
>>> G = PermutationGroup(a, b) |
|
>>> P = Polyhedron(list('ABC'), pgroup=G) |
|
>>> P.corners |
|
(A, B, C) |
|
>>> P.rotate(0) # apply permutation 0 |
|
>>> P.corners |
|
(A, C, B) |
|
>>> P.reset() |
|
>>> P.corners |
|
(A, B, C) |
|
|
|
Or one can make a permutation as a product of selected permutations |
|
and apply them to an iterable directly: |
|
|
|
>>> P10 = G.make_perm([0, 1]) |
|
>>> P10('ABC') |
|
['C', 'A', 'B'] |
|
|
|
See Also |
|
======== |
|
|
|
sympy.combinatorics.polyhedron.Polyhedron, |
|
sympy.combinatorics.permutations.Permutation |
|
|
|
References |
|
========== |
|
|
|
.. [1] Holt, D., Eick, B., O'Brien, E. |
|
"Handbook of Computational Group Theory" |
|
|
|
.. [2] Seress, A. |
|
"Permutation Group Algorithms" |
|
|
|
.. [3] https://en.wikipedia.org/wiki/Schreier_vector |
|
|
|
.. [4] https://en.wikipedia.org/wiki/Nielsen_transformation#Product_replacement_algorithm |
|
|
|
.. [5] Frank Celler, Charles R.Leedham-Green, Scott H.Murray, |
|
Alice C.Niemeyer, and E.A.O'Brien. "Generating Random |
|
Elements of a Finite Group" |
|
|
|
.. [6] https://en.wikipedia.org/wiki/Block_%28permutation_group_theory%29 |
|
|
|
.. [7] https://algorithmist.com/wiki/Union_find |
|
|
|
.. [8] https://en.wikipedia.org/wiki/Multiply_transitive_group#Multiply_transitive_groups |
|
|
|
.. [9] https://en.wikipedia.org/wiki/Center_%28group_theory%29 |
|
|
|
.. [10] https://en.wikipedia.org/wiki/Centralizer_and_normalizer |
|
|
|
.. [11] https://groupprops.subwiki.org/wiki/Derived_subgroup |
|
|
|
.. [12] https://en.wikipedia.org/wiki/Nilpotent_group |
|
|
|
.. [13] https://www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf |
|
|
|
.. [14] https://docs.gap-system.org/doc/ref/manual.pdf |
|
|
|
""" |
|
is_group = True |
|
|
|
def __new__(cls, *args, dups=True, **kwargs): |
|
"""The default constructor. Accepts Cycle and Permutation forms. |
|
Removes duplicates unless ``dups`` keyword is ``False``. |
|
""" |
|
if not args: |
|
args = [Permutation()] |
|
else: |
|
args = list(args[0] if is_sequence(args[0]) else args) |
|
if not args: |
|
args = [Permutation()] |
|
if any(isinstance(a, Cycle) for a in args): |
|
args = [Permutation(a) for a in args] |
|
if has_variety(a.size for a in args): |
|
degree = kwargs.pop('degree', None) |
|
if degree is None: |
|
degree = max(a.size for a in args) |
|
for i in range(len(args)): |
|
if args[i].size != degree: |
|
args[i] = Permutation(args[i], size=degree) |
|
if dups: |
|
args = list(uniq([_af_new(list(a)) for a in args])) |
|
if len(args) > 1: |
|
args = [g for g in args if not g.is_identity] |
|
return Basic.__new__(cls, *args, **kwargs) |
|
|
|
def __init__(self, *args, **kwargs): |
|
self._generators = list(self.args) |
|
self._order = None |
|
self._elements = [] |
|
self._center = None |
|
self._is_abelian = None |
|
self._is_transitive = None |
|
self._is_sym = None |
|
self._is_alt = None |
|
self._is_primitive = None |
|
self._is_nilpotent = None |
|
self._is_solvable = None |
|
self._is_trivial = None |
|
self._transitivity_degree = None |
|
self._max_div = None |
|
self._is_perfect = None |
|
self._is_cyclic = None |
|
self._is_dihedral = None |
|
self._r = len(self._generators) |
|
self._degree = self._generators[0].size |
|
|
|
|
|
self._base = [] |
|
self._strong_gens = [] |
|
self._strong_gens_slp = [] |
|
self._basic_orbits = [] |
|
self._transversals = [] |
|
self._transversal_slp = [] |
|
|
|
|
|
self._random_gens = [] |
|
|
|
|
|
self._fp_presentation = None |
|
|
|
def __getitem__(self, i): |
|
return self._generators[i] |
|
|
|
def __contains__(self, i): |
|
"""Return ``True`` if *i* is contained in PermutationGroup. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> p = Permutation(1, 2, 3) |
|
>>> Permutation(3) in PermutationGroup(p) |
|
True |
|
|
|
""" |
|
if not isinstance(i, Permutation): |
|
raise TypeError("A PermutationGroup contains only Permutations as " |
|
"elements, not elements of type %s" % type(i)) |
|
return self.contains(i) |
|
|
|
def __len__(self): |
|
return len(self._generators) |
|
|
|
def equals(self, other): |
|
"""Return ``True`` if PermutationGroup generated by elements in the |
|
group are same i.e they represent the same PermutationGroup. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> p = Permutation(0, 1, 2, 3, 4, 5) |
|
>>> G = PermutationGroup([p, p**2]) |
|
>>> H = PermutationGroup([p**2, p]) |
|
>>> G.generators == H.generators |
|
False |
|
>>> G.equals(H) |
|
True |
|
|
|
""" |
|
if not isinstance(other, PermutationGroup): |
|
return False |
|
|
|
set_self_gens = set(self.generators) |
|
set_other_gens = set(other.generators) |
|
|
|
|
|
|
|
|
|
if set_self_gens == set_other_gens: |
|
return True |
|
|
|
|
|
|
|
for gen1 in set_self_gens: |
|
if not other.contains(gen1): |
|
return False |
|
for gen2 in set_other_gens: |
|
if not self.contains(gen2): |
|
return False |
|
return True |
|
|
|
def __mul__(self, other): |
|
""" |
|
Return the direct product of two permutation groups as a permutation |
|
group. |
|
|
|
Explanation |
|
=========== |
|
|
|
This implementation realizes the direct product by shifting the index |
|
set for the generators of the second group: so if we have ``G`` acting |
|
on ``n1`` points and ``H`` acting on ``n2`` points, ``G*H`` acts on |
|
``n1 + n2`` points. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import CyclicGroup |
|
>>> G = CyclicGroup(5) |
|
>>> H = G*G |
|
>>> H |
|
PermutationGroup([ |
|
(9)(0 1 2 3 4), |
|
(5 6 7 8 9)]) |
|
>>> H.order() |
|
25 |
|
|
|
""" |
|
if isinstance(other, Permutation): |
|
return Coset(other, self, dir='+') |
|
gens1 = [perm._array_form for perm in self.generators] |
|
gens2 = [perm._array_form for perm in other.generators] |
|
n1 = self._degree |
|
n2 = other._degree |
|
start = list(range(n1)) |
|
end = list(range(n1, n1 + n2)) |
|
for i in range(len(gens2)): |
|
gens2[i] = [x + n1 for x in gens2[i]] |
|
gens2 = [start + gen for gen in gens2] |
|
gens1 = [gen + end for gen in gens1] |
|
together = gens1 + gens2 |
|
gens = [_af_new(x) for x in together] |
|
return PermutationGroup(gens) |
|
|
|
def _random_pr_init(self, r, n, _random_prec_n=None): |
|
r"""Initialize random generators for the product replacement algorithm. |
|
|
|
Explanation |
|
=========== |
|
|
|
The implementation uses a modification of the original product |
|
replacement algorithm due to Leedham-Green, as described in [1], |
|
pp. 69-71; also, see [2], pp. 27-29 for a detailed theoretical |
|
analysis of the original product replacement algorithm, and [4]. |
|
|
|
The product replacement algorithm is used for producing random, |
|
uniformly distributed elements of a group `G` with a set of generators |
|
`S`. For the initialization ``_random_pr_init``, a list ``R`` of |
|
`\max\{r, |S|\}` group generators is created as the attribute |
|
``G._random_gens``, repeating elements of `S` if necessary, and the |
|
identity element of `G` is appended to ``R`` - we shall refer to this |
|
last element as the accumulator. Then the function ``random_pr()`` |
|
is called ``n`` times, randomizing the list ``R`` while preserving |
|
the generation of `G` by ``R``. The function ``random_pr()`` itself |
|
takes two random elements ``g, h`` among all elements of ``R`` but |
|
the accumulator and replaces ``g`` with a randomly chosen element |
|
from `\{gh, g(~h), hg, (~h)g\}`. Then the accumulator is multiplied |
|
by whatever ``g`` was replaced by. The new value of the accumulator is |
|
then returned by ``random_pr()``. |
|
|
|
The elements returned will eventually (for ``n`` large enough) become |
|
uniformly distributed across `G` ([5]). For practical purposes however, |
|
the values ``n = 50, r = 11`` are suggested in [1]. |
|
|
|
Notes |
|
===== |
|
|
|
THIS FUNCTION HAS SIDE EFFECTS: it changes the attribute |
|
self._random_gens |
|
|
|
See Also |
|
======== |
|
|
|
random_pr |
|
|
|
""" |
|
deg = self.degree |
|
random_gens = [x._array_form for x in self.generators] |
|
k = len(random_gens) |
|
if k < r: |
|
for i in range(k, r): |
|
random_gens.append(random_gens[i - k]) |
|
acc = list(range(deg)) |
|
random_gens.append(acc) |
|
self._random_gens = random_gens |
|
|
|
|
|
if _random_prec_n is None: |
|
for i in range(n): |
|
self.random_pr() |
|
else: |
|
for i in range(n): |
|
self.random_pr(_random_prec=_random_prec_n[i]) |
|
|
|
def _union_find_merge(self, first, second, ranks, parents, not_rep): |
|
"""Merges two classes in a union-find data structure. |
|
|
|
Explanation |
|
=========== |
|
|
|
Used in the implementation of Atkinson's algorithm as suggested in [1], |
|
pp. 83-87. The class merging process uses union by rank as an |
|
optimization. ([7]) |
|
|
|
Notes |
|
===== |
|
|
|
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, |
|
``parents``, the list of class sizes, ``ranks``, and the list of |
|
elements that are not representatives, ``not_rep``, are changed due to |
|
class merging. |
|
|
|
See Also |
|
======== |
|
|
|
minimal_block, _union_find_rep |
|
|
|
References |
|
========== |
|
|
|
.. [1] Holt, D., Eick, B., O'Brien, E. |
|
"Handbook of computational group theory" |
|
|
|
.. [7] https://algorithmist.com/wiki/Union_find |
|
|
|
""" |
|
rep_first = self._union_find_rep(first, parents) |
|
rep_second = self._union_find_rep(second, parents) |
|
if rep_first != rep_second: |
|
|
|
if ranks[rep_first] >= ranks[rep_second]: |
|
new_1, new_2 = rep_first, rep_second |
|
else: |
|
new_1, new_2 = rep_second, rep_first |
|
total_rank = ranks[new_1] + ranks[new_2] |
|
if total_rank > self.max_div: |
|
return -1 |
|
parents[new_2] = new_1 |
|
ranks[new_1] = total_rank |
|
not_rep.append(new_2) |
|
return 1 |
|
return 0 |
|
|
|
def _union_find_rep(self, num, parents): |
|
"""Find representative of a class in a union-find data structure. |
|
|
|
Explanation |
|
=========== |
|
|
|
Used in the implementation of Atkinson's algorithm as suggested in [1], |
|
pp. 83-87. After the representative of the class to which ``num`` |
|
belongs is found, path compression is performed as an optimization |
|
([7]). |
|
|
|
Notes |
|
===== |
|
|
|
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, |
|
``parents``, is altered due to path compression. |
|
|
|
See Also |
|
======== |
|
|
|
minimal_block, _union_find_merge |
|
|
|
References |
|
========== |
|
|
|
.. [1] Holt, D., Eick, B., O'Brien, E. |
|
"Handbook of computational group theory" |
|
|
|
.. [7] https://algorithmist.com/wiki/Union_find |
|
|
|
""" |
|
rep, parent = num, parents[num] |
|
while parent != rep: |
|
rep = parent |
|
parent = parents[rep] |
|
|
|
temp, parent = num, parents[num] |
|
while parent != rep: |
|
parents[temp] = rep |
|
temp = parent |
|
parent = parents[temp] |
|
return rep |
|
|
|
@property |
|
def base(self): |
|
r"""Return a base from the Schreier-Sims algorithm. |
|
|
|
Explanation |
|
=========== |
|
|
|
For a permutation group `G`, a base is a sequence of points |
|
`B = (b_1, b_2, \dots, b_k)` such that no element of `G` apart |
|
from the identity fixes all the points in `B`. The concepts of |
|
a base and strong generating set and their applications are |
|
discussed in depth in [1], pp. 87-89 and [2], pp. 55-57. |
|
|
|
An alternative way to think of `B` is that it gives the |
|
indices of the stabilizer cosets that contain more than the |
|
identity permutation. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> G = PermutationGroup([Permutation(0, 1, 3)(2, 4)]) |
|
>>> G.base |
|
[0, 2] |
|
|
|
See Also |
|
======== |
|
|
|
strong_gens, basic_transversals, basic_orbits, basic_stabilizers |
|
|
|
""" |
|
if self._base == []: |
|
self.schreier_sims() |
|
return self._base |
|
|
|
def baseswap(self, base, strong_gens, pos, randomized=False, |
|
transversals=None, basic_orbits=None, strong_gens_distr=None): |
|
r"""Swap two consecutive base points in base and strong generating set. |
|
|
|
Explanation |
|
=========== |
|
|
|
If a base for a group `G` is given by `(b_1, b_2, \dots, b_k)`, this |
|
function returns a base `(b_1, b_2, \dots, b_{i+1}, b_i, \dots, b_k)`, |
|
where `i` is given by ``pos``, and a strong generating set relative |
|
to that base. The original base and strong generating set are not |
|
modified. |
|
|
|
The randomized version (default) is of Las Vegas type. |
|
|
|
Parameters |
|
========== |
|
|
|
base, strong_gens |
|
The base and strong generating set. |
|
pos |
|
The position at which swapping is performed. |
|
randomized |
|
A switch between randomized and deterministic version. |
|
transversals |
|
The transversals for the basic orbits, if known. |
|
basic_orbits |
|
The basic orbits, if known. |
|
strong_gens_distr |
|
The strong generators distributed by basic stabilizers, if known. |
|
|
|
Returns |
|
======= |
|
|
|
(base, strong_gens) |
|
``base`` is the new base, and ``strong_gens`` is a generating set |
|
relative to it. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup |
|
>>> from sympy.combinatorics.testutil import _verify_bsgs |
|
>>> from sympy.combinatorics.perm_groups import PermutationGroup |
|
>>> S = SymmetricGroup(4) |
|
>>> S.schreier_sims() |
|
>>> S.base |
|
[0, 1, 2] |
|
>>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False) |
|
>>> base, gens |
|
([0, 2, 1], |
|
[(0 1 2 3), (3)(0 1), (1 3 2), |
|
(2 3), (1 3)]) |
|
|
|
check that base, gens is a BSGS |
|
|
|
>>> S1 = PermutationGroup(gens) |
|
>>> _verify_bsgs(S1, base, gens) |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
schreier_sims |
|
|
|
Notes |
|
===== |
|
|
|
The deterministic version of the algorithm is discussed in |
|
[1], pp. 102-103; the randomized version is discussed in [1], p.103, and |
|
[2], p.98. It is of Las Vegas type. |
|
Notice that [1] contains a mistake in the pseudocode and |
|
discussion of BASESWAP: on line 3 of the pseudocode, |
|
`|\beta_{i+1}^{\left\langle T\right\rangle}|` should be replaced by |
|
`|\beta_{i}^{\left\langle T\right\rangle}|`, and the same for the |
|
discussion of the algorithm. |
|
|
|
""" |
|
|
|
|
|
transversals, basic_orbits, strong_gens_distr = \ |
|
_handle_precomputed_bsgs(base, strong_gens, transversals, |
|
basic_orbits, strong_gens_distr) |
|
base_len = len(base) |
|
degree = self.degree |
|
|
|
|
|
size = len(basic_orbits[pos])*len(basic_orbits[pos + 1]) \ |
|
//len(_orbit(degree, strong_gens_distr[pos], base[pos + 1])) |
|
|
|
if pos + 2 > base_len - 1: |
|
T = [] |
|
else: |
|
T = strong_gens_distr[pos + 2][:] |
|
|
|
if randomized is True: |
|
stab_pos = PermutationGroup(strong_gens_distr[pos]) |
|
schreier_vector = stab_pos.schreier_vector(base[pos + 1]) |
|
|
|
while len(_orbit(degree, T, base[pos])) != size: |
|
new = stab_pos.random_stab(base[pos + 1], |
|
schreier_vector=schreier_vector) |
|
T.append(new) |
|
|
|
else: |
|
Gamma = set(basic_orbits[pos]) |
|
Gamma.remove(base[pos]) |
|
if base[pos + 1] in Gamma: |
|
Gamma.remove(base[pos + 1]) |
|
|
|
|
|
while len(_orbit(degree, T, base[pos])) != size: |
|
gamma = next(iter(Gamma)) |
|
x = transversals[pos][gamma] |
|
temp = x._array_form.index(base[pos + 1]) |
|
if temp not in basic_orbits[pos + 1]: |
|
Gamma = Gamma - _orbit(degree, T, gamma) |
|
else: |
|
y = transversals[pos + 1][temp] |
|
el = rmul(x, y) |
|
if el(base[pos]) not in _orbit(degree, T, base[pos]): |
|
T.append(el) |
|
Gamma = Gamma - _orbit(degree, T, base[pos]) |
|
|
|
strong_gens_new_distr = strong_gens_distr[:] |
|
strong_gens_new_distr[pos + 1] = T |
|
base_new = base[:] |
|
base_new[pos], base_new[pos + 1] = base_new[pos + 1], base_new[pos] |
|
strong_gens_new = _strong_gens_from_distr(strong_gens_new_distr) |
|
for gen in T: |
|
if gen not in strong_gens_new: |
|
strong_gens_new.append(gen) |
|
return base_new, strong_gens_new |
|
|
|
@property |
|
def basic_orbits(self): |
|
r""" |
|
Return the basic orbits relative to a base and strong generating set. |
|
|
|
Explanation |
|
=========== |
|
|
|
If `(b_1, b_2, \dots, b_k)` is a base for a group `G`, and |
|
`G^{(i)} = G_{b_1, b_2, \dots, b_{i-1}}` is the ``i``-th basic stabilizer |
|
(so that `G^{(1)} = G`), the ``i``-th basic orbit relative to this base |
|
is the orbit of `b_i` under `G^{(i)}`. See [1], pp. 87-89 for more |
|
information. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup |
|
>>> S = SymmetricGroup(4) |
|
>>> S.basic_orbits |
|
[[0, 1, 2, 3], [1, 2, 3], [2, 3]] |
|
|
|
See Also |
|
======== |
|
|
|
base, strong_gens, basic_transversals, basic_stabilizers |
|
|
|
""" |
|
if self._basic_orbits == []: |
|
self.schreier_sims() |
|
return self._basic_orbits |
|
|
|
@property |
|
def basic_stabilizers(self): |
|
r""" |
|
Return a chain of stabilizers relative to a base and strong generating |
|
set. |
|
|
|
Explanation |
|
=========== |
|
|
|
The ``i``-th basic stabilizer `G^{(i)}` relative to a base |
|
`(b_1, b_2, \dots, b_k)` is `G_{b_1, b_2, \dots, b_{i-1}}`. For more |
|
information, see [1], pp. 87-89. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import AlternatingGroup |
|
>>> A = AlternatingGroup(4) |
|
>>> A.schreier_sims() |
|
>>> A.base |
|
[0, 1] |
|
>>> for g in A.basic_stabilizers: |
|
... print(g) |
|
... |
|
PermutationGroup([ |
|
(3)(0 1 2), |
|
(1 2 3)]) |
|
PermutationGroup([ |
|
(1 2 3)]) |
|
|
|
See Also |
|
======== |
|
|
|
base, strong_gens, basic_orbits, basic_transversals |
|
|
|
""" |
|
|
|
if self._transversals == []: |
|
self.schreier_sims() |
|
strong_gens = self._strong_gens |
|
base = self._base |
|
if not base: |
|
return [] |
|
strong_gens_distr = _distribute_gens_by_base(base, strong_gens) |
|
basic_stabilizers = [] |
|
for gens in strong_gens_distr: |
|
basic_stabilizers.append(PermutationGroup(gens)) |
|
return basic_stabilizers |
|
|
|
@property |
|
def basic_transversals(self): |
|
""" |
|
Return basic transversals relative to a base and strong generating set. |
|
|
|
Explanation |
|
=========== |
|
|
|
The basic transversals are transversals of the basic orbits. They |
|
are provided as a list of dictionaries, each dictionary having |
|
keys - the elements of one of the basic orbits, and values - the |
|
corresponding transversal elements. See [1], pp. 87-89 for more |
|
information. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import AlternatingGroup |
|
>>> A = AlternatingGroup(4) |
|
>>> A.basic_transversals |
|
[{0: (3), 1: (3)(0 1 2), 2: (3)(0 2 1), 3: (0 3 1)}, {1: (3), 2: (1 2 3), 3: (1 3 2)}] |
|
|
|
See Also |
|
======== |
|
|
|
strong_gens, base, basic_orbits, basic_stabilizers |
|
|
|
""" |
|
|
|
if self._transversals == []: |
|
self.schreier_sims() |
|
return self._transversals |
|
|
|
def composition_series(self): |
|
r""" |
|
Return the composition series for a group as a list |
|
of permutation groups. |
|
|
|
Explanation |
|
=========== |
|
|
|
The composition series for a group `G` is defined as a |
|
subnormal series `G = H_0 > H_1 > H_2 \ldots` A composition |
|
series is a subnormal series such that each factor group |
|
`H(i+1) / H(i)` is simple. |
|
A subnormal series is a composition series only if it is of |
|
maximum length. |
|
|
|
The algorithm works as follows: |
|
Starting with the derived series the idea is to fill |
|
the gap between `G = der[i]` and `H = der[i+1]` for each |
|
`i` independently. Since, all subgroups of the abelian group |
|
`G/H` are normal so, first step is to take the generators |
|
`g` of `G` and add them to generators of `H` one by one. |
|
|
|
The factor groups formed are not simple in general. Each |
|
group is obtained from the previous one by adding one |
|
generator `g`, if the previous group is denoted by `H` |
|
then the next group `K` is generated by `g` and `H`. |
|
The factor group `K/H` is cyclic and it's order is |
|
`K.order()//G.order()`. The series is then extended between |
|
`K` and `H` by groups generated by powers of `g` and `H`. |
|
The series formed is then prepended to the already existing |
|
series. |
|
|
|
Examples |
|
======== |
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup |
|
>>> from sympy.combinatorics.named_groups import CyclicGroup |
|
>>> S = SymmetricGroup(12) |
|
>>> G = S.sylow_subgroup(2) |
|
>>> C = G.composition_series() |
|
>>> [H.order() for H in C] |
|
[1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1] |
|
>>> G = S.sylow_subgroup(3) |
|
>>> C = G.composition_series() |
|
>>> [H.order() for H in C] |
|
[243, 81, 27, 9, 3, 1] |
|
>>> G = CyclicGroup(12) |
|
>>> C = G.composition_series() |
|
>>> [H.order() for H in C] |
|
[12, 6, 3, 1] |
|
|
|
""" |
|
der = self.derived_series() |
|
if not all(g.is_identity for g in der[-1].generators): |
|
raise NotImplementedError('Group should be solvable') |
|
series = [] |
|
|
|
for i in range(len(der)-1): |
|
H = der[i+1] |
|
up_seg = [] |
|
for g in der[i].generators: |
|
K = PermutationGroup([g] + H.generators) |
|
order = K.order() // H.order() |
|
down_seg = [] |
|
for p, e in factorint(order).items(): |
|
for _ in range(e): |
|
down_seg.append(PermutationGroup([g] + H.generators)) |
|
g = g**p |
|
up_seg = down_seg + up_seg |
|
H = K |
|
up_seg[0] = der[i] |
|
series.extend(up_seg) |
|
series.append(der[-1]) |
|
return series |
|
|
|
def coset_transversal(self, H): |
|
"""Return a transversal of the right cosets of self by its subgroup H |
|
using the second method described in [1], Subsection 4.6.7 |
|
|
|
""" |
|
|
|
if not H.is_subgroup(self): |
|
raise ValueError("The argument must be a subgroup") |
|
|
|
if H.order() == 1: |
|
return self.elements |
|
|
|
self._schreier_sims(base=H.base) |
|
|
|
base = self.base |
|
base_ordering = _base_ordering(base, self.degree) |
|
identity = Permutation(self.degree - 1) |
|
|
|
transversals = self.basic_transversals[:] |
|
|
|
|
|
|
|
for l, t in enumerate(transversals): |
|
transversals[l] = sorted(t.values(), |
|
key = lambda x: base_ordering[base[l]^x]) |
|
|
|
orbits = H.basic_orbits |
|
h_stabs = H.basic_stabilizers |
|
g_stabs = self.basic_stabilizers |
|
|
|
indices = [x.order()//y.order() for x, y in zip(g_stabs, h_stabs)] |
|
|
|
|
|
|
|
|
|
|
|
if len(g_stabs) > len(h_stabs): |
|
T = g_stabs[len(h_stabs)].elements |
|
else: |
|
T = [identity] |
|
l = len(h_stabs)-1 |
|
t_len = len(T) |
|
while l > -1: |
|
T_next = [] |
|
for u in transversals[l]: |
|
if u == identity: |
|
continue |
|
b = base_ordering[base[l]^u] |
|
for t in T: |
|
p = t*u |
|
if all(base_ordering[h^p] >= b for h in orbits[l]): |
|
T_next.append(p) |
|
if t_len + len(T_next) == indices[l]: |
|
break |
|
if t_len + len(T_next) == indices[l]: |
|
break |
|
T += T_next |
|
t_len += len(T_next) |
|
l -= 1 |
|
T.remove(identity) |
|
T = [identity] + T |
|
return T |
|
|
|
def _coset_representative(self, g, H): |
|
"""Return the representative of Hg from the transversal that |
|
would be computed by ``self.coset_transversal(H)``. |
|
|
|
""" |
|
if H.order() == 1: |
|
return g |
|
|
|
if not(self.base[:len(H.base)] == H.base): |
|
self._schreier_sims(base=H.base) |
|
orbits = H.basic_orbits[:] |
|
h_transversals = [list(_.values()) for _ in H.basic_transversals] |
|
transversals = [list(_.values()) for _ in self.basic_transversals] |
|
base = self.base |
|
base_ordering = _base_ordering(base, self.degree) |
|
def step(l, x): |
|
gamma = min(orbits[l], key = lambda y: base_ordering[y^x]) |
|
i = [base[l]^h for h in h_transversals[l]].index(gamma) |
|
x = h_transversals[l][i]*x |
|
if l < len(orbits)-1: |
|
for u in transversals[l]: |
|
if base[l]^u == base[l]^x: |
|
break |
|
x = step(l+1, x*u**-1)*u |
|
return x |
|
return step(0, g) |
|
|
|
def coset_table(self, H): |
|
"""Return the standardised (right) coset table of self in H as |
|
a list of lists. |
|
""" |
|
|
|
|
|
|
|
|
|
if not H.is_subgroup(self): |
|
raise ValueError("The argument must be a subgroup") |
|
T = self.coset_transversal(H) |
|
n = len(T) |
|
|
|
A = list(chain.from_iterable((gen, gen**-1) |
|
for gen in self.generators)) |
|
|
|
table = [] |
|
for i in range(n): |
|
row = [self._coset_representative(T[i]*x, H) for x in A] |
|
row = [T.index(r) for r in row] |
|
table.append(row) |
|
|
|
|
|
|
|
|
|
A = range(len(A)) |
|
gamma = 1 |
|
for alpha, a in product(range(n), A): |
|
beta = table[alpha][a] |
|
if beta >= gamma: |
|
if beta > gamma: |
|
for x in A: |
|
z = table[gamma][x] |
|
table[gamma][x] = table[beta][x] |
|
table[beta][x] = z |
|
for i in range(n): |
|
if table[i][x] == beta: |
|
table[i][x] = gamma |
|
elif table[i][x] == gamma: |
|
table[i][x] = beta |
|
gamma += 1 |
|
if gamma >= n-1: |
|
return table |
|
|
|
def center(self): |
|
r""" |
|
Return the center of a permutation group. |
|
|
|
Explanation |
|
=========== |
|
|
|
The center for a group `G` is defined as |
|
`Z(G) = \{z\in G | \forall g\in G, zg = gz \}`, |
|
the set of elements of `G` that commute with all elements of `G`. |
|
It is equal to the centralizer of `G` inside `G`, and is naturally a |
|
subgroup of `G` ([9]). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import DihedralGroup |
|
>>> D = DihedralGroup(4) |
|
>>> G = D.center() |
|
>>> G.order() |
|
2 |
|
|
|
See Also |
|
======== |
|
|
|
centralizer |
|
|
|
Notes |
|
===== |
|
|
|
This is a naive implementation that is a straightforward application |
|
of ``.centralizer()`` |
|
|
|
""" |
|
if not self._center: |
|
self._center = self.centralizer(self) |
|
return self._center |
|
|
|
def centralizer(self, other): |
|
r""" |
|
Return the centralizer of a group/set/element. |
|
|
|
Explanation |
|
=========== |
|
|
|
The centralizer of a set of permutations ``S`` inside |
|
a group ``G`` is the set of elements of ``G`` that commute with all |
|
elements of ``S``:: |
|
|
|
`C_G(S) = \{ g \in G | gs = sg \forall s \in S\}` ([10]) |
|
|
|
Usually, ``S`` is a subset of ``G``, but if ``G`` is a proper subgroup of |
|
the full symmetric group, we allow for ``S`` to have elements outside |
|
``G``. |
|
|
|
It is naturally a subgroup of ``G``; the centralizer of a permutation |
|
group is equal to the centralizer of any set of generators for that |
|
group, since any element commuting with the generators commutes with |
|
any product of the generators. |
|
|
|
Parameters |
|
========== |
|
|
|
other |
|
a permutation group/list of permutations/single permutation |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, |
|
... CyclicGroup) |
|
>>> S = SymmetricGroup(6) |
|
>>> C = CyclicGroup(6) |
|
>>> H = S.centralizer(C) |
|
>>> H.is_subgroup(C) |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
subgroup_search |
|
|
|
Notes |
|
===== |
|
|
|
The implementation is an application of ``.subgroup_search()`` with |
|
tests using a specific base for the group ``G``. |
|
|
|
""" |
|
if hasattr(other, 'generators'): |
|
if other.is_trivial or self.is_trivial: |
|
return self |
|
degree = self.degree |
|
identity = _af_new(list(range(degree))) |
|
orbits = other.orbits() |
|
num_orbits = len(orbits) |
|
orbits.sort(key=lambda x: -len(x)) |
|
long_base = [] |
|
orbit_reps = [None]*num_orbits |
|
orbit_reps_indices = [None]*num_orbits |
|
orbit_descr = [None]*degree |
|
for i in range(num_orbits): |
|
orbit = list(orbits[i]) |
|
orbit_reps[i] = orbit[0] |
|
orbit_reps_indices[i] = len(long_base) |
|
for point in orbit: |
|
orbit_descr[point] = i |
|
long_base = long_base + orbit |
|
base, strong_gens = self.schreier_sims_incremental(base=long_base) |
|
strong_gens_distr = _distribute_gens_by_base(base, strong_gens) |
|
i = 0 |
|
for i in range(len(base)): |
|
if strong_gens_distr[i] == [identity]: |
|
break |
|
base = base[:i] |
|
base_len = i |
|
for j in range(num_orbits): |
|
if base[base_len - 1] in orbits[j]: |
|
break |
|
rel_orbits = orbits[: j + 1] |
|
num_rel_orbits = len(rel_orbits) |
|
transversals = [None]*num_rel_orbits |
|
for j in range(num_rel_orbits): |
|
rep = orbit_reps[j] |
|
transversals[j] = dict( |
|
other.orbit_transversal(rep, pairs=True)) |
|
trivial_test = lambda x: True |
|
tests = [None]*base_len |
|
for l in range(base_len): |
|
if base[l] in orbit_reps: |
|
tests[l] = trivial_test |
|
else: |
|
def test(computed_words, l=l): |
|
g = computed_words[l] |
|
rep_orb_index = orbit_descr[base[l]] |
|
rep = orbit_reps[rep_orb_index] |
|
im = g._array_form[base[l]] |
|
im_rep = g._array_form[rep] |
|
tr_el = transversals[rep_orb_index][base[l]] |
|
|
|
|
|
|
|
|
|
return im == tr_el._array_form[im_rep] |
|
tests[l] = test |
|
|
|
def prop(g): |
|
return [rmul(g, gen) for gen in other.generators] == \ |
|
[rmul(gen, g) for gen in other.generators] |
|
return self.subgroup_search(prop, base=base, |
|
strong_gens=strong_gens, tests=tests) |
|
elif hasattr(other, '__getitem__'): |
|
gens = list(other) |
|
return self.centralizer(PermutationGroup(gens)) |
|
elif hasattr(other, 'array_form'): |
|
return self.centralizer(PermutationGroup([other])) |
|
|
|
def commutator(self, G, H): |
|
""" |
|
Return the commutator of two subgroups. |
|
|
|
Explanation |
|
=========== |
|
|
|
For a permutation group ``K`` and subgroups ``G``, ``H``, the |
|
commutator of ``G`` and ``H`` is defined as the group generated |
|
by all the commutators `[g, h] = hgh^{-1}g^{-1}` for ``g`` in ``G`` and |
|
``h`` in ``H``. It is naturally a subgroup of ``K`` ([1], p.27). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, |
|
... AlternatingGroup) |
|
>>> S = SymmetricGroup(5) |
|
>>> A = AlternatingGroup(5) |
|
>>> G = S.commutator(S, A) |
|
>>> G.is_subgroup(A) |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
derived_subgroup |
|
|
|
Notes |
|
===== |
|
|
|
The commutator of two subgroups `H, G` is equal to the normal closure |
|
of the commutators of all the generators, i.e. `hgh^{-1}g^{-1}` for `h` |
|
a generator of `H` and `g` a generator of `G` ([1], p.28) |
|
|
|
""" |
|
ggens = G.generators |
|
hgens = H.generators |
|
commutators = [] |
|
for ggen in ggens: |
|
for hgen in hgens: |
|
commutator = rmul(hgen, ggen, ~hgen, ~ggen) |
|
if commutator not in commutators: |
|
commutators.append(commutator) |
|
res = self.normal_closure(commutators) |
|
return res |
|
|
|
def coset_factor(self, g, factor_index=False): |
|
"""Return ``G``'s (self's) coset factorization of ``g`` |
|
|
|
Explanation |
|
=========== |
|
|
|
If ``g`` is an element of ``G`` then it can be written as the product |
|
of permutations drawn from the Schreier-Sims coset decomposition, |
|
|
|
The permutations returned in ``f`` are those for which |
|
the product gives ``g``: ``g = f[n]*...f[1]*f[0]`` where ``n = len(B)`` |
|
and ``B = G.base``. f[i] is one of the permutations in |
|
``self._basic_orbits[i]``. |
|
|
|
If factor_index==True, |
|
returns a tuple ``[b[0],..,b[n]]``, where ``b[i]`` |
|
belongs to ``self._basic_orbits[i]`` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5) |
|
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6) |
|
>>> G = PermutationGroup([a, b]) |
|
|
|
Define g: |
|
|
|
>>> g = Permutation(7)(1, 2, 4)(3, 6, 5) |
|
|
|
Confirm that it is an element of G: |
|
|
|
>>> G.contains(g) |
|
True |
|
|
|
Thus, it can be written as a product of factors (up to |
|
3) drawn from u. See below that a factor from u1 and u2 |
|
and the Identity permutation have been used: |
|
|
|
>>> f = G.coset_factor(g) |
|
>>> f[2]*f[1]*f[0] == g |
|
True |
|
>>> f1 = G.coset_factor(g, True); f1 |
|
[0, 4, 4] |
|
>>> tr = G.basic_transversals |
|
>>> f[0] == tr[0][f1[0]] |
|
True |
|
|
|
If g is not an element of G then [] is returned: |
|
|
|
>>> c = Permutation(5, 6, 7) |
|
>>> G.coset_factor(c) |
|
[] |
|
|
|
See Also |
|
======== |
|
|
|
sympy.combinatorics.util._strip |
|
|
|
""" |
|
if isinstance(g, (Cycle, Permutation)): |
|
g = g.list() |
|
if len(g) != self._degree: |
|
|
|
|
|
|
|
raise ValueError('g should be the same size as permutations of G') |
|
I = list(range(self._degree)) |
|
basic_orbits = self.basic_orbits |
|
transversals = self._transversals |
|
factors = [] |
|
base = self.base |
|
h = g |
|
for i in range(len(base)): |
|
beta = h[base[i]] |
|
if beta == base[i]: |
|
factors.append(beta) |
|
continue |
|
if beta not in basic_orbits[i]: |
|
return [] |
|
u = transversals[i][beta]._array_form |
|
h = _af_rmul(_af_invert(u), h) |
|
factors.append(beta) |
|
if h != I: |
|
return [] |
|
if factor_index: |
|
return factors |
|
tr = self.basic_transversals |
|
factors = [tr[i][factors[i]] for i in range(len(base))] |
|
return factors |
|
|
|
def generator_product(self, g, original=False): |
|
r''' |
|
Return a list of strong generators `[s1, \dots, sn]` |
|
s.t `g = sn \times \dots \times s1`. If ``original=True``, make the |
|
list contain only the original group generators |
|
|
|
''' |
|
product = [] |
|
if g.is_identity: |
|
return [] |
|
if g in self.strong_gens: |
|
if not original or g in self.generators: |
|
return [g] |
|
else: |
|
slp = self._strong_gens_slp[g] |
|
for s in slp: |
|
product.extend(self.generator_product(s, original=True)) |
|
return product |
|
elif g**-1 in self.strong_gens: |
|
g = g**-1 |
|
if not original or g in self.generators: |
|
return [g**-1] |
|
else: |
|
slp = self._strong_gens_slp[g] |
|
for s in slp: |
|
product.extend(self.generator_product(s, original=True)) |
|
l = len(product) |
|
product = [product[l-i-1]**-1 for i in range(l)] |
|
return product |
|
|
|
f = self.coset_factor(g, True) |
|
for i, j in enumerate(f): |
|
slp = self._transversal_slp[i][j] |
|
for s in slp: |
|
if not original: |
|
product.append(self.strong_gens[s]) |
|
else: |
|
s = self.strong_gens[s] |
|
product.extend(self.generator_product(s, original=True)) |
|
return product |
|
|
|
def coset_rank(self, g): |
|
"""rank using Schreier-Sims representation. |
|
|
|
Explanation |
|
=========== |
|
|
|
The coset rank of ``g`` is the ordering number in which |
|
it appears in the lexicographic listing according to the |
|
coset decomposition |
|
|
|
The ordering is the same as in G.generate(method='coset'). |
|
If ``g`` does not belong to the group it returns None. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5) |
|
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> c = Permutation(7)(2, 4)(3, 5) |
|
>>> G.coset_rank(c) |
|
16 |
|
>>> G.coset_unrank(16) |
|
(7)(2 4)(3 5) |
|
|
|
See Also |
|
======== |
|
|
|
coset_factor |
|
|
|
""" |
|
factors = self.coset_factor(g, True) |
|
if not factors: |
|
return None |
|
rank = 0 |
|
b = 1 |
|
transversals = self._transversals |
|
base = self._base |
|
basic_orbits = self._basic_orbits |
|
for i in range(len(base)): |
|
k = factors[i] |
|
j = basic_orbits[i].index(k) |
|
rank += b*j |
|
b = b*len(transversals[i]) |
|
return rank |
|
|
|
def coset_unrank(self, rank, af=False): |
|
"""unrank using Schreier-Sims representation |
|
|
|
coset_unrank is the inverse operation of coset_rank |
|
if 0 <= rank < order; otherwise it returns None. |
|
|
|
""" |
|
if rank < 0 or rank >= self.order(): |
|
return None |
|
base = self.base |
|
transversals = self.basic_transversals |
|
basic_orbits = self.basic_orbits |
|
m = len(base) |
|
v = [0]*m |
|
for i in range(m): |
|
rank, c = divmod(rank, len(transversals[i])) |
|
v[i] = basic_orbits[i][c] |
|
a = [transversals[i][v[i]]._array_form for i in range(m)] |
|
h = _af_rmuln(*a) |
|
if af: |
|
return h |
|
else: |
|
return _af_new(h) |
|
|
|
@property |
|
def degree(self): |
|
"""Returns the size of the permutations in the group. |
|
|
|
Explanation |
|
=========== |
|
|
|
The number of permutations comprising the group is given by |
|
``len(group)``; the number of permutations that can be generated |
|
by the group is given by ``group.order()``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([1, 0, 2]) |
|
>>> G = PermutationGroup([a]) |
|
>>> G.degree |
|
3 |
|
>>> len(G) |
|
1 |
|
>>> G.order() |
|
2 |
|
>>> list(G.generate()) |
|
[(2), (2)(0 1)] |
|
|
|
See Also |
|
======== |
|
|
|
order |
|
""" |
|
return self._degree |
|
|
|
@property |
|
def identity(self): |
|
''' |
|
Return the identity element of the permutation group. |
|
|
|
''' |
|
return _af_new(list(range(self.degree))) |
|
|
|
@property |
|
def elements(self): |
|
"""Returns all the elements of the permutation group as a list |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2)) |
|
>>> p.elements |
|
[(3), (3)(1 2), (1 3), (2 3), (1 2 3), (1 3 2)] |
|
|
|
""" |
|
if not self._elements: |
|
self._elements = list(self.generate()) |
|
|
|
return self._elements |
|
|
|
def derived_series(self): |
|
r"""Return the derived series for the group. |
|
|
|
Explanation |
|
=========== |
|
|
|
The derived series for a group `G` is defined as |
|
`G = G_0 > G_1 > G_2 > \ldots` where `G_i = [G_{i-1}, G_{i-1}]`, |
|
i.e. `G_i` is the derived subgroup of `G_{i-1}`, for |
|
`i\in\mathbb{N}`. When we have `G_k = G_{k-1}` for some |
|
`k\in\mathbb{N}`, the series terminates. |
|
|
|
Returns |
|
======= |
|
|
|
A list of permutation groups containing the members of the derived |
|
series in the order `G = G_0, G_1, G_2, \ldots`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, |
|
... AlternatingGroup, DihedralGroup) |
|
>>> A = AlternatingGroup(5) |
|
>>> len(A.derived_series()) |
|
1 |
|
>>> S = SymmetricGroup(4) |
|
>>> len(S.derived_series()) |
|
4 |
|
>>> S.derived_series()[1].is_subgroup(AlternatingGroup(4)) |
|
True |
|
>>> S.derived_series()[2].is_subgroup(DihedralGroup(2)) |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
derived_subgroup |
|
|
|
""" |
|
res = [self] |
|
current = self |
|
nxt = self.derived_subgroup() |
|
while not current.is_subgroup(nxt): |
|
res.append(nxt) |
|
current = nxt |
|
nxt = nxt.derived_subgroup() |
|
return res |
|
|
|
def derived_subgroup(self): |
|
r"""Compute the derived subgroup. |
|
|
|
Explanation |
|
=========== |
|
|
|
The derived subgroup, or commutator subgroup is the subgroup generated |
|
by all commutators `[g, h] = hgh^{-1}g^{-1}` for `g, h\in G` ; it is |
|
equal to the normal closure of the set of commutators of the generators |
|
([1], p.28, [11]). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([1, 0, 2, 4, 3]) |
|
>>> b = Permutation([0, 1, 3, 2, 4]) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> C = G.derived_subgroup() |
|
>>> list(C.generate(af=True)) |
|
[[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]] |
|
|
|
See Also |
|
======== |
|
|
|
derived_series |
|
|
|
""" |
|
r = self._r |
|
gens = [p._array_form for p in self.generators] |
|
set_commutators = set() |
|
degree = self._degree |
|
rng = list(range(degree)) |
|
for i in range(r): |
|
for j in range(r): |
|
p1 = gens[i] |
|
p2 = gens[j] |
|
c = list(range(degree)) |
|
for k in rng: |
|
c[p2[p1[k]]] = p1[p2[k]] |
|
ct = tuple(c) |
|
if ct not in set_commutators: |
|
set_commutators.add(ct) |
|
cms = [_af_new(p) for p in set_commutators] |
|
G2 = self.normal_closure(cms) |
|
return G2 |
|
|
|
def generate(self, method="coset", af=False): |
|
"""Return iterator to generate the elements of the group. |
|
|
|
Explanation |
|
=========== |
|
|
|
Iteration is done with one of these methods:: |
|
|
|
method='coset' using the Schreier-Sims coset representation |
|
method='dimino' using the Dimino method |
|
|
|
If ``af = True`` it yields the array form of the permutations |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import PermutationGroup |
|
>>> from sympy.combinatorics.polyhedron import tetrahedron |
|
|
|
The permutation group given in the tetrahedron object is also |
|
true groups: |
|
|
|
>>> G = tetrahedron.pgroup |
|
>>> G.is_group |
|
True |
|
|
|
Also the group generated by the permutations in the tetrahedron |
|
pgroup -- even the first two -- is a proper group: |
|
|
|
>>> H = PermutationGroup(G[0], G[1]) |
|
>>> J = PermutationGroup(list(H.generate())); J |
|
PermutationGroup([ |
|
(0 1)(2 3), |
|
(1 2 3), |
|
(1 3 2), |
|
(0 3 1), |
|
(0 2 3), |
|
(0 3)(1 2), |
|
(0 1 3), |
|
(3)(0 2 1), |
|
(0 3 2), |
|
(3)(0 1 2), |
|
(0 2)(1 3)]) |
|
>>> _.is_group |
|
True |
|
""" |
|
if method == "coset": |
|
return self.generate_schreier_sims(af) |
|
elif method == "dimino": |
|
return self.generate_dimino(af) |
|
else: |
|
raise NotImplementedError('No generation defined for %s' % method) |
|
|
|
def generate_dimino(self, af=False): |
|
"""Yield group elements using Dimino's algorithm. |
|
|
|
If ``af == True`` it yields the array form of the permutations. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([0, 2, 1, 3]) |
|
>>> b = Permutation([0, 2, 3, 1]) |
|
>>> g = PermutationGroup([a, b]) |
|
>>> list(g.generate_dimino(af=True)) |
|
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1], |
|
[0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]] |
|
|
|
References |
|
========== |
|
|
|
.. [1] The Implementation of Various Algorithms for Permutation Groups in |
|
the Computer Algebra System: AXIOM, N.J. Doye, M.Sc. Thesis |
|
|
|
""" |
|
idn = list(range(self.degree)) |
|
order = 0 |
|
element_list = [idn] |
|
set_element_list = {tuple(idn)} |
|
if af: |
|
yield idn |
|
else: |
|
yield _af_new(idn) |
|
gens = [p._array_form for p in self.generators] |
|
|
|
for i in range(len(gens)): |
|
|
|
D = element_list.copy() |
|
N = [idn] |
|
while N: |
|
A = N |
|
N = [] |
|
for a in A: |
|
for g in gens[:i + 1]: |
|
ag = _af_rmul(a, g) |
|
if tuple(ag) not in set_element_list: |
|
|
|
for d in D: |
|
order += 1 |
|
ap = _af_rmul(d, ag) |
|
if af: |
|
yield ap |
|
else: |
|
p = _af_new(ap) |
|
yield p |
|
element_list.append(ap) |
|
set_element_list.add(tuple(ap)) |
|
N.append(ap) |
|
self._order = len(element_list) |
|
|
|
def generate_schreier_sims(self, af=False): |
|
"""Yield group elements using the Schreier-Sims representation |
|
in coset_rank order |
|
|
|
If ``af = True`` it yields the array form of the permutations |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([0, 2, 1, 3]) |
|
>>> b = Permutation([0, 2, 3, 1]) |
|
>>> g = PermutationGroup([a, b]) |
|
>>> list(g.generate_schreier_sims(af=True)) |
|
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 3, 2, 1], |
|
[0, 1, 3, 2], [0, 2, 3, 1], [0, 3, 1, 2]] |
|
""" |
|
|
|
n = self._degree |
|
u = self.basic_transversals |
|
basic_orbits = self._basic_orbits |
|
if len(u) == 0: |
|
for x in self.generators: |
|
if af: |
|
yield x._array_form |
|
else: |
|
yield x |
|
return |
|
if len(u) == 1: |
|
for i in basic_orbits[0]: |
|
if af: |
|
yield u[0][i]._array_form |
|
else: |
|
yield u[0][i] |
|
return |
|
|
|
u = list(reversed(u)) |
|
basic_orbits = basic_orbits[::-1] |
|
|
|
stg = [list(range(n))] |
|
posmax = [len(x) for x in u] |
|
n1 = len(posmax) - 1 |
|
pos = [0]*n1 |
|
h = 0 |
|
while 1: |
|
|
|
if pos[h] >= posmax[h]: |
|
if h == 0: |
|
return |
|
pos[h] = 0 |
|
h -= 1 |
|
stg.pop() |
|
continue |
|
p = _af_rmul(u[h][basic_orbits[h][pos[h]]]._array_form, stg[-1]) |
|
pos[h] += 1 |
|
stg.append(p) |
|
h += 1 |
|
if h == n1: |
|
if af: |
|
for i in basic_orbits[-1]: |
|
p = _af_rmul(u[-1][i]._array_form, stg[-1]) |
|
yield p |
|
else: |
|
for i in basic_orbits[-1]: |
|
p = _af_rmul(u[-1][i]._array_form, stg[-1]) |
|
p1 = _af_new(p) |
|
yield p1 |
|
stg.pop() |
|
h -= 1 |
|
|
|
@property |
|
def generators(self): |
|
"""Returns the generators of the group. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([0, 2, 1]) |
|
>>> b = Permutation([1, 0, 2]) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> G.generators |
|
[(1 2), (2)(0 1)] |
|
|
|
""" |
|
return self._generators |
|
|
|
def contains(self, g, strict=True): |
|
"""Test if permutation ``g`` belong to self, ``G``. |
|
|
|
Explanation |
|
=========== |
|
|
|
If ``g`` is an element of ``G`` it can be written as a product |
|
of factors drawn from the cosets of ``G``'s stabilizers. To see |
|
if ``g`` is one of the actual generators defining the group use |
|
``G.has(g)``. |
|
|
|
If ``strict`` is not ``True``, ``g`` will be resized, if necessary, |
|
to match the size of permutations in ``self``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
|
|
>>> a = Permutation(1, 2) |
|
>>> b = Permutation(2, 3, 1) |
|
>>> G = PermutationGroup(a, b, degree=5) |
|
>>> G.contains(G[0]) # trivial check |
|
True |
|
>>> elem = Permutation([[2, 3]], size=5) |
|
>>> G.contains(elem) |
|
True |
|
>>> G.contains(Permutation(4)(0, 1, 2, 3)) |
|
False |
|
|
|
If strict is False, a permutation will be resized, if |
|
necessary: |
|
|
|
>>> H = PermutationGroup(Permutation(5)) |
|
>>> H.contains(Permutation(3)) |
|
False |
|
>>> H.contains(Permutation(3), strict=False) |
|
True |
|
|
|
To test if a given permutation is present in the group: |
|
|
|
>>> elem in G.generators |
|
False |
|
>>> G.has(elem) |
|
False |
|
|
|
See Also |
|
======== |
|
|
|
coset_factor, sympy.core.basic.Basic.has, __contains__ |
|
|
|
""" |
|
if not isinstance(g, Permutation): |
|
return False |
|
if g.size != self.degree: |
|
if strict: |
|
return False |
|
g = Permutation(g, size=self.degree) |
|
if g in self.generators: |
|
return True |
|
return bool(self.coset_factor(g.array_form, True)) |
|
|
|
@property |
|
def is_perfect(self): |
|
"""Return ``True`` if the group is perfect. |
|
A group is perfect if it equals to its derived subgroup. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation(1,2,3)(4,5) |
|
>>> b = Permutation(1,2,3,4,5) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> G.is_perfect |
|
False |
|
|
|
""" |
|
if self._is_perfect is None: |
|
self._is_perfect = self.equals(self.derived_subgroup()) |
|
return self._is_perfect |
|
|
|
@property |
|
def is_abelian(self): |
|
"""Test if the group is Abelian. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([0, 2, 1]) |
|
>>> b = Permutation([1, 0, 2]) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> G.is_abelian |
|
False |
|
>>> a = Permutation([0, 2, 1]) |
|
>>> G = PermutationGroup([a]) |
|
>>> G.is_abelian |
|
True |
|
|
|
""" |
|
if self._is_abelian is not None: |
|
return self._is_abelian |
|
|
|
self._is_abelian = True |
|
gens = [p._array_form for p in self.generators] |
|
for x in gens: |
|
for y in gens: |
|
if y <= x: |
|
continue |
|
if not _af_commutes_with(x, y): |
|
self._is_abelian = False |
|
return False |
|
return True |
|
|
|
def abelian_invariants(self): |
|
""" |
|
Returns the abelian invariants for the given group. |
|
Let ``G`` be a nontrivial finite abelian group. Then G is isomorphic to |
|
the direct product of finitely many nontrivial cyclic groups of |
|
prime-power order. |
|
|
|
Explanation |
|
=========== |
|
|
|
The prime-powers that occur as the orders of the factors are uniquely |
|
determined by G. More precisely, the primes that occur in the orders of the |
|
factors in any such decomposition of ``G`` are exactly the primes that divide |
|
``|G|`` and for any such prime ``p``, if the orders of the factors that are |
|
p-groups in one such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, |
|
then the orders of the factors that are p-groups in any such decomposition of ``G`` |
|
are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``. |
|
|
|
The uniquely determined integers ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, taken |
|
for all primes that divide ``|G|`` are called the invariants of the nontrivial |
|
group ``G`` as suggested in ([14], p. 542). |
|
|
|
Notes |
|
===== |
|
|
|
We adopt the convention that the invariants of a trivial group are []. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([0, 2, 1]) |
|
>>> b = Permutation([1, 0, 2]) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> G.abelian_invariants() |
|
[2] |
|
>>> from sympy.combinatorics import CyclicGroup |
|
>>> G = CyclicGroup(7) |
|
>>> G.abelian_invariants() |
|
[7] |
|
|
|
""" |
|
if self.is_trivial: |
|
return [] |
|
gns = self.generators |
|
inv = [] |
|
G = self |
|
H = G.derived_subgroup() |
|
Hgens = H.generators |
|
for p in primefactors(G.order()): |
|
ranks = [] |
|
while True: |
|
pows = [] |
|
for g in gns: |
|
elm = g**p |
|
if not H.contains(elm): |
|
pows.append(elm) |
|
K = PermutationGroup(Hgens + pows) if pows else H |
|
r = G.order()//K.order() |
|
G = K |
|
gns = pows |
|
if r == 1: |
|
break |
|
ranks.append(multiplicity(p, r)) |
|
|
|
if ranks: |
|
pows = [1]*ranks[0] |
|
for i in ranks: |
|
for j in range(i): |
|
pows[j] = pows[j]*p |
|
inv.extend(pows) |
|
inv.sort() |
|
return inv |
|
|
|
def is_elementary(self, p): |
|
"""Return ``True`` if the group is elementary abelian. An elementary |
|
abelian group is a finite abelian group, where every nontrivial |
|
element has order `p`, where `p` is a prime. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([0, 2, 1]) |
|
>>> G = PermutationGroup([a]) |
|
>>> G.is_elementary(2) |
|
True |
|
>>> a = Permutation([0, 2, 1, 3]) |
|
>>> b = Permutation([3, 1, 2, 0]) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> G.is_elementary(2) |
|
True |
|
>>> G.is_elementary(3) |
|
False |
|
|
|
""" |
|
return self.is_abelian and all(g.order() == p for g in self.generators) |
|
|
|
def _eval_is_alt_sym_naive(self, only_sym=False, only_alt=False): |
|
"""A naive test using the group order.""" |
|
if only_sym and only_alt: |
|
raise ValueError( |
|
"Both {} and {} cannot be set to True" |
|
.format(only_sym, only_alt)) |
|
|
|
n = self.degree |
|
sym_order = _factorial(n) |
|
order = self.order() |
|
|
|
if order == sym_order: |
|
self._is_sym = True |
|
self._is_alt = False |
|
return not only_alt |
|
|
|
if 2*order == sym_order: |
|
self._is_sym = False |
|
self._is_alt = True |
|
return not only_sym |
|
|
|
return False |
|
|
|
def _eval_is_alt_sym_monte_carlo(self, eps=0.05, perms=None): |
|
"""A test using monte-carlo algorithm. |
|
|
|
Parameters |
|
========== |
|
|
|
eps : float, optional |
|
The criterion for the incorrect ``False`` return. |
|
|
|
perms : list[Permutation], optional |
|
If explicitly given, it tests over the given candidates |
|
for testing. |
|
|
|
If ``None``, it randomly computes ``N_eps`` and chooses |
|
``N_eps`` sample of the permutation from the group. |
|
|
|
See Also |
|
======== |
|
|
|
_check_cycles_alt_sym |
|
""" |
|
if perms is None: |
|
n = self.degree |
|
if n < 17: |
|
c_n = 0.34 |
|
else: |
|
c_n = 0.57 |
|
d_n = (c_n*log(2))/log(n) |
|
N_eps = int(-log(eps)/d_n) |
|
|
|
perms = (self.random_pr() for i in range(N_eps)) |
|
return self._eval_is_alt_sym_monte_carlo(perms=perms) |
|
|
|
for perm in perms: |
|
if _check_cycles_alt_sym(perm): |
|
return True |
|
return False |
|
|
|
def is_alt_sym(self, eps=0.05, _random_prec=None): |
|
r"""Monte Carlo test for the symmetric/alternating group for degrees |
|
>= 8. |
|
|
|
Explanation |
|
=========== |
|
|
|
More specifically, it is one-sided Monte Carlo with the |
|
answer True (i.e., G is symmetric/alternating) guaranteed to be |
|
correct, and the answer False being incorrect with probability eps. |
|
|
|
For degree < 8, the order of the group is checked so the test |
|
is deterministic. |
|
|
|
Notes |
|
===== |
|
|
|
The algorithm itself uses some nontrivial results from group theory and |
|
number theory: |
|
1) If a transitive group ``G`` of degree ``n`` contains an element |
|
with a cycle of length ``n/2 < p < n-2`` for ``p`` a prime, ``G`` is the |
|
symmetric or alternating group ([1], pp. 81-82) |
|
2) The proportion of elements in the symmetric/alternating group having |
|
the property described in 1) is approximately `\log(2)/\log(n)` |
|
([1], p.82; [2], pp. 226-227). |
|
The helper function ``_check_cycles_alt_sym`` is used to |
|
go over the cycles in a permutation and look for ones satisfying 1). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import DihedralGroup |
|
>>> D = DihedralGroup(10) |
|
>>> D.is_alt_sym() |
|
False |
|
|
|
See Also |
|
======== |
|
|
|
_check_cycles_alt_sym |
|
|
|
""" |
|
if _random_prec is not None: |
|
N_eps = _random_prec['N_eps'] |
|
perms= (_random_prec[i] for i in range(N_eps)) |
|
return self._eval_is_alt_sym_monte_carlo(perms=perms) |
|
|
|
if self._is_sym or self._is_alt: |
|
return True |
|
if self._is_sym is False and self._is_alt is False: |
|
return False |
|
|
|
n = self.degree |
|
if n < 8: |
|
return self._eval_is_alt_sym_naive() |
|
elif self.is_transitive(): |
|
return self._eval_is_alt_sym_monte_carlo(eps=eps) |
|
|
|
self._is_sym, self._is_alt = False, False |
|
return False |
|
|
|
@property |
|
def is_nilpotent(self): |
|
"""Test if the group is nilpotent. |
|
|
|
Explanation |
|
=========== |
|
|
|
A group `G` is nilpotent if it has a central series of finite length. |
|
Alternatively, `G` is nilpotent if its lower central series terminates |
|
with the trivial group. Every nilpotent group is also solvable |
|
([1], p.29, [12]). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, |
|
... CyclicGroup) |
|
>>> C = CyclicGroup(6) |
|
>>> C.is_nilpotent |
|
True |
|
>>> S = SymmetricGroup(5) |
|
>>> S.is_nilpotent |
|
False |
|
|
|
See Also |
|
======== |
|
|
|
lower_central_series, is_solvable |
|
|
|
""" |
|
if self._is_nilpotent is None: |
|
lcs = self.lower_central_series() |
|
terminator = lcs[len(lcs) - 1] |
|
gens = terminator.generators |
|
degree = self.degree |
|
identity = _af_new(list(range(degree))) |
|
if all(g == identity for g in gens): |
|
self._is_solvable = True |
|
self._is_nilpotent = True |
|
return True |
|
else: |
|
self._is_nilpotent = False |
|
return False |
|
else: |
|
return self._is_nilpotent |
|
|
|
def is_normal(self, gr, strict=True): |
|
"""Test if ``G=self`` is a normal subgroup of ``gr``. |
|
|
|
Explanation |
|
=========== |
|
|
|
G is normal in gr if |
|
for each g2 in G, g1 in gr, ``g = g1*g2*g1**-1`` belongs to G |
|
It is sufficient to check this for each g1 in gr.generators and |
|
g2 in G.generators. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([1, 2, 0]) |
|
>>> b = Permutation([1, 0, 2]) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> G1 = PermutationGroup([a, Permutation([2, 0, 1])]) |
|
>>> G1.is_normal(G) |
|
True |
|
|
|
""" |
|
if not self.is_subgroup(gr, strict=strict): |
|
return False |
|
d_self = self.degree |
|
d_gr = gr.degree |
|
if self.is_trivial and (d_self == d_gr or not strict): |
|
return True |
|
if self._is_abelian: |
|
return True |
|
new_self = self.copy() |
|
if not strict and d_self != d_gr: |
|
if d_self < d_gr: |
|
new_self = PermGroup(new_self.generators + [Permutation(d_gr - 1)]) |
|
else: |
|
gr = PermGroup(gr.generators + [Permutation(d_self - 1)]) |
|
gens2 = [p._array_form for p in new_self.generators] |
|
gens1 = [p._array_form for p in gr.generators] |
|
for g1 in gens1: |
|
for g2 in gens2: |
|
p = _af_rmuln(g1, g2, _af_invert(g1)) |
|
if not new_self.coset_factor(p, True): |
|
return False |
|
return True |
|
|
|
def is_primitive(self, randomized=True): |
|
r"""Test if a group is primitive. |
|
|
|
Explanation |
|
=========== |
|
|
|
A permutation group ``G`` acting on a set ``S`` is called primitive if |
|
``S`` contains no nontrivial block under the action of ``G`` |
|
(a block is nontrivial if its cardinality is more than ``1``). |
|
|
|
Notes |
|
===== |
|
|
|
The algorithm is described in [1], p.83, and uses the function |
|
minimal_block to search for blocks of the form `\{0, k\}` for ``k`` |
|
ranging over representatives for the orbits of `G_0`, the stabilizer of |
|
``0``. This algorithm has complexity `O(n^2)` where ``n`` is the degree |
|
of the group, and will perform badly if `G_0` is small. |
|
|
|
There are two implementations offered: one finds `G_0` |
|
deterministically using the function ``stabilizer``, and the other |
|
(default) produces random elements of `G_0` using ``random_stab``, |
|
hoping that they generate a subgroup of `G_0` with not too many more |
|
orbits than `G_0` (this is suggested in [1], p.83). Behavior is changed |
|
by the ``randomized`` flag. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import DihedralGroup |
|
>>> D = DihedralGroup(10) |
|
>>> D.is_primitive() |
|
False |
|
|
|
See Also |
|
======== |
|
|
|
minimal_block, random_stab |
|
|
|
""" |
|
if self._is_primitive is not None: |
|
return self._is_primitive |
|
|
|
if self.is_transitive() is False: |
|
return False |
|
|
|
if randomized: |
|
random_stab_gens = [] |
|
v = self.schreier_vector(0) |
|
for _ in range(len(self)): |
|
random_stab_gens.append(self.random_stab(0, v)) |
|
stab = PermutationGroup(random_stab_gens) |
|
else: |
|
stab = self.stabilizer(0) |
|
orbits = stab.orbits() |
|
for orb in orbits: |
|
x = orb.pop() |
|
if x != 0 and any(e != 0 for e in self.minimal_block([0, x])): |
|
self._is_primitive = False |
|
return False |
|
self._is_primitive = True |
|
return True |
|
|
|
def minimal_blocks(self, randomized=True): |
|
''' |
|
For a transitive group, return the list of all minimal |
|
block systems. If a group is intransitive, return `False`. |
|
|
|
Examples |
|
======== |
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> from sympy.combinatorics.named_groups import DihedralGroup |
|
>>> DihedralGroup(6).minimal_blocks() |
|
[[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]] |
|
>>> G = PermutationGroup(Permutation(1,2,5)) |
|
>>> G.minimal_blocks() |
|
False |
|
|
|
See Also |
|
======== |
|
|
|
minimal_block, is_transitive, is_primitive |
|
|
|
''' |
|
def _number_blocks(blocks): |
|
|
|
|
|
|
|
|
|
n = len(blocks) |
|
appeared = {} |
|
m = 0 |
|
b = [None]*n |
|
for i in range(n): |
|
if blocks[i] not in appeared: |
|
appeared[blocks[i]] = m |
|
b[i] = m |
|
m += 1 |
|
else: |
|
b[i] = appeared[blocks[i]] |
|
return tuple(b), m |
|
|
|
if not self.is_transitive(): |
|
return False |
|
blocks = [] |
|
num_blocks = [] |
|
rep_blocks = [] |
|
if randomized: |
|
random_stab_gens = [] |
|
v = self.schreier_vector(0) |
|
for i in range(len(self)): |
|
random_stab_gens.append(self.random_stab(0, v)) |
|
stab = PermutationGroup(random_stab_gens) |
|
else: |
|
stab = self.stabilizer(0) |
|
orbits = stab.orbits() |
|
for orb in orbits: |
|
x = orb.pop() |
|
if x != 0: |
|
block = self.minimal_block([0, x]) |
|
num_block, _ = _number_blocks(block) |
|
|
|
rep = {j for j in range(self.degree) if num_block[j] == 0} |
|
|
|
|
|
minimal = True |
|
blocks_remove_mask = [False] * len(blocks) |
|
for i, r in enumerate(rep_blocks): |
|
if len(r) > len(rep) and rep.issubset(r): |
|
|
|
blocks_remove_mask[i] = True |
|
elif len(r) < len(rep) and r.issubset(rep): |
|
|
|
minimal = False |
|
break |
|
|
|
blocks = [b for i, b in enumerate(blocks) if not blocks_remove_mask[i]] |
|
num_blocks = [n for i, n in enumerate(num_blocks) if not blocks_remove_mask[i]] |
|
rep_blocks = [r for i, r in enumerate(rep_blocks) if not blocks_remove_mask[i]] |
|
|
|
if minimal and num_block not in num_blocks: |
|
blocks.append(block) |
|
num_blocks.append(num_block) |
|
rep_blocks.append(rep) |
|
return blocks |
|
|
|
@property |
|
def is_solvable(self): |
|
"""Test if the group is solvable. |
|
|
|
``G`` is solvable if its derived series terminates with the trivial |
|
group ([1], p.29). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup |
|
>>> S = SymmetricGroup(3) |
|
>>> S.is_solvable |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
is_nilpotent, derived_series |
|
|
|
""" |
|
if self._is_solvable is None: |
|
if self.order() % 2 != 0: |
|
return True |
|
ds = self.derived_series() |
|
terminator = ds[len(ds) - 1] |
|
gens = terminator.generators |
|
degree = self.degree |
|
identity = _af_new(list(range(degree))) |
|
if all(g == identity for g in gens): |
|
self._is_solvable = True |
|
return True |
|
else: |
|
self._is_solvable = False |
|
return False |
|
else: |
|
return self._is_solvable |
|
|
|
def is_subgroup(self, G, strict=True): |
|
"""Return ``True`` if all elements of ``self`` belong to ``G``. |
|
|
|
If ``strict`` is ``False`` then if ``self``'s degree is smaller |
|
than ``G``'s, the elements will be resized to have the same degree. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> from sympy.combinatorics import SymmetricGroup, CyclicGroup |
|
|
|
Testing is strict by default: the degree of each group must be the |
|
same: |
|
|
|
>>> p = Permutation(0, 1, 2, 3, 4, 5) |
|
>>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)]) |
|
>>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)]) |
|
>>> G3 = PermutationGroup([p, p**2]) |
|
>>> assert G1.order() == G2.order() == G3.order() == 6 |
|
>>> G1.is_subgroup(G2) |
|
True |
|
>>> G1.is_subgroup(G3) |
|
False |
|
>>> G3.is_subgroup(PermutationGroup(G3[1])) |
|
False |
|
>>> G3.is_subgroup(PermutationGroup(G3[0])) |
|
True |
|
|
|
To ignore the size, set ``strict`` to ``False``: |
|
|
|
>>> S3 = SymmetricGroup(3) |
|
>>> S5 = SymmetricGroup(5) |
|
>>> S3.is_subgroup(S5, strict=False) |
|
True |
|
>>> C7 = CyclicGroup(7) |
|
>>> G = S5*C7 |
|
>>> S5.is_subgroup(G, False) |
|
True |
|
>>> C7.is_subgroup(G, 0) |
|
False |
|
|
|
""" |
|
if isinstance(G, SymmetricPermutationGroup): |
|
if self.degree != G.degree: |
|
return False |
|
return True |
|
if not isinstance(G, PermutationGroup): |
|
return False |
|
if self == G or self.generators[0]==Permutation(): |
|
return True |
|
if G.order() % self.order() != 0: |
|
return False |
|
if self.degree == G.degree or \ |
|
(self.degree < G.degree and not strict): |
|
gens = self.generators |
|
else: |
|
return False |
|
return all(G.contains(g, strict=strict) for g in gens) |
|
|
|
@property |
|
def is_polycyclic(self): |
|
"""Return ``True`` if a group is polycyclic. A group is polycyclic if |
|
it has a subnormal series with cyclic factors. For finite groups, |
|
this is the same as if the group is solvable. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([0, 2, 1, 3]) |
|
>>> b = Permutation([2, 0, 1, 3]) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> G.is_polycyclic |
|
True |
|
|
|
""" |
|
return self.is_solvable |
|
|
|
def is_transitive(self, strict=True): |
|
"""Test if the group is transitive. |
|
|
|
Explanation |
|
=========== |
|
|
|
A group is transitive if it has a single orbit. |
|
|
|
If ``strict`` is ``False`` the group is transitive if it has |
|
a single orbit of length different from 1. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([0, 2, 1, 3]) |
|
>>> b = Permutation([2, 0, 1, 3]) |
|
>>> G1 = PermutationGroup([a, b]) |
|
>>> G1.is_transitive() |
|
False |
|
>>> G1.is_transitive(strict=False) |
|
True |
|
>>> c = Permutation([2, 3, 0, 1]) |
|
>>> G2 = PermutationGroup([a, c]) |
|
>>> G2.is_transitive() |
|
True |
|
>>> d = Permutation([1, 0, 2, 3]) |
|
>>> e = Permutation([0, 1, 3, 2]) |
|
>>> G3 = PermutationGroup([d, e]) |
|
>>> G3.is_transitive() or G3.is_transitive(strict=False) |
|
False |
|
|
|
""" |
|
if self._is_transitive: |
|
return self._is_transitive |
|
if strict: |
|
if self._is_transitive is not None: |
|
return self._is_transitive |
|
|
|
ans = len(self.orbit(0)) == self.degree |
|
self._is_transitive = ans |
|
return ans |
|
|
|
got_orb = False |
|
for x in self.orbits(): |
|
if len(x) > 1: |
|
if got_orb: |
|
return False |
|
got_orb = True |
|
return got_orb |
|
|
|
@property |
|
def is_trivial(self): |
|
"""Test if the group is the trivial group. |
|
|
|
This is true if the group contains only the identity permutation. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> G = PermutationGroup([Permutation([0, 1, 2])]) |
|
>>> G.is_trivial |
|
True |
|
|
|
""" |
|
if self._is_trivial is None: |
|
self._is_trivial = len(self) == 1 and self[0].is_Identity |
|
return self._is_trivial |
|
|
|
def lower_central_series(self): |
|
r"""Return the lower central series for the group. |
|
|
|
The lower central series for a group `G` is the series |
|
`G = G_0 > G_1 > G_2 > \ldots` where |
|
`G_k = [G, G_{k-1}]`, i.e. every term after the first is equal to the |
|
commutator of `G` and the previous term in `G1` ([1], p.29). |
|
|
|
Returns |
|
======= |
|
|
|
A list of permutation groups in the order `G = G_0, G_1, G_2, \ldots` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import (AlternatingGroup, |
|
... DihedralGroup) |
|
>>> A = AlternatingGroup(4) |
|
>>> len(A.lower_central_series()) |
|
2 |
|
>>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2)) |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
commutator, derived_series |
|
|
|
""" |
|
res = [self] |
|
current = self |
|
nxt = self.commutator(self, current) |
|
while not current.is_subgroup(nxt): |
|
res.append(nxt) |
|
current = nxt |
|
nxt = self.commutator(self, current) |
|
return res |
|
|
|
@property |
|
def max_div(self): |
|
"""Maximum proper divisor of the degree of a permutation group. |
|
|
|
Explanation |
|
=========== |
|
|
|
Obviously, this is the degree divided by its minimal proper divisor |
|
(larger than ``1``, if one exists). As it is guaranteed to be prime, |
|
the ``sieve`` from ``sympy.ntheory`` is used. |
|
This function is also used as an optimization tool for the functions |
|
``minimal_block`` and ``_union_find_merge``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> G = PermutationGroup([Permutation([0, 2, 1, 3])]) |
|
>>> G.max_div |
|
2 |
|
|
|
See Also |
|
======== |
|
|
|
minimal_block, _union_find_merge |
|
|
|
""" |
|
if self._max_div is not None: |
|
return self._max_div |
|
n = self.degree |
|
if n == 1: |
|
return 1 |
|
for x in sieve: |
|
if n % x == 0: |
|
d = n//x |
|
self._max_div = d |
|
return d |
|
|
|
def minimal_block(self, points): |
|
r"""For a transitive group, finds the block system generated by |
|
``points``. |
|
|
|
Explanation |
|
=========== |
|
|
|
If a group ``G`` acts on a set ``S``, a nonempty subset ``B`` of ``S`` |
|
is called a block under the action of ``G`` if for all ``g`` in ``G`` |
|
we have ``gB = B`` (``g`` fixes ``B``) or ``gB`` and ``B`` have no |
|
common points (``g`` moves ``B`` entirely). ([1], p.23; [6]). |
|
|
|
The distinct translates ``gB`` of a block ``B`` for ``g`` in ``G`` |
|
partition the set ``S`` and this set of translates is known as a block |
|
system. Moreover, we obviously have that all blocks in the partition |
|
have the same size, hence the block size divides ``|S|`` ([1], p.23). |
|
A ``G``-congruence is an equivalence relation ``~`` on the set ``S`` |
|
such that ``a ~ b`` implies ``g(a) ~ g(b)`` for all ``g`` in ``G``. |
|
For a transitive group, the equivalence classes of a ``G``-congruence |
|
and the blocks of a block system are the same thing ([1], p.23). |
|
|
|
The algorithm below checks the group for transitivity, and then finds |
|
the ``G``-congruence generated by the pairs ``(p_0, p_1), (p_0, p_2), |
|
..., (p_0,p_{k-1})`` which is the same as finding the maximal block |
|
system (i.e., the one with minimum block size) such that |
|
``p_0, ..., p_{k-1}`` are in the same block ([1], p.83). |
|
|
|
It is an implementation of Atkinson's algorithm, as suggested in [1], |
|
and manipulates an equivalence relation on the set ``S`` using a |
|
union-find data structure. The running time is just above |
|
`O(|points||S|)`. ([1], pp. 83-87; [7]). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import DihedralGroup |
|
>>> D = DihedralGroup(10) |
|
>>> D.minimal_block([0, 5]) |
|
[0, 1, 2, 3, 4, 0, 1, 2, 3, 4] |
|
>>> D.minimal_block([0, 1]) |
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
|
|
|
See Also |
|
======== |
|
|
|
_union_find_rep, _union_find_merge, is_transitive, is_primitive |
|
|
|
""" |
|
if not self.is_transitive(): |
|
return False |
|
n = self.degree |
|
gens = self.generators |
|
|
|
parents = list(range(n)) |
|
ranks = [1]*n |
|
not_rep = [] |
|
k = len(points) |
|
|
|
if k > self.max_div: |
|
return [0]*n |
|
for i in range(k - 1): |
|
parents[points[i + 1]] = points[0] |
|
not_rep.append(points[i + 1]) |
|
ranks[points[0]] = k |
|
i = 0 |
|
len_not_rep = k - 1 |
|
while i < len_not_rep: |
|
gamma = not_rep[i] |
|
i += 1 |
|
for gen in gens: |
|
|
|
|
|
delta = self._union_find_rep(gamma, parents) |
|
|
|
|
|
temp = self._union_find_merge(gen(gamma), gen(delta), ranks, |
|
parents, not_rep) |
|
if temp == -1: |
|
return [0]*n |
|
len_not_rep += temp |
|
for i in range(n): |
|
|
|
|
|
self._union_find_rep(i, parents) |
|
|
|
|
|
new_reps = {} |
|
return [new_reps.setdefault(r, i) for i, r in enumerate(parents)] |
|
|
|
def conjugacy_class(self, x): |
|
r"""Return the conjugacy class of an element in the group. |
|
|
|
Explanation |
|
=========== |
|
|
|
The conjugacy class of an element ``g`` in a group ``G`` is the set of |
|
elements ``x`` in ``G`` that are conjugate with ``g``, i.e. for which |
|
|
|
``g = xax^{-1}`` |
|
|
|
for some ``a`` in ``G``. |
|
|
|
Note that conjugacy is an equivalence relation, and therefore that |
|
conjugacy classes are partitions of ``G``. For a list of all the |
|
conjugacy classes of the group, use the conjugacy_classes() method. |
|
|
|
In a permutation group, each conjugacy class corresponds to a particular |
|
`cycle structure': for example, in ``S_3``, the conjugacy classes are: |
|
|
|
* the identity class, ``{()}`` |
|
* all transpositions, ``{(1 2), (1 3), (2 3)}`` |
|
* all 3-cycles, ``{(1 2 3), (1 3 2)}`` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, SymmetricGroup |
|
>>> S3 = SymmetricGroup(3) |
|
>>> S3.conjugacy_class(Permutation(0, 1, 2)) |
|
{(0 1 2), (0 2 1)} |
|
|
|
Notes |
|
===== |
|
|
|
This procedure computes the conjugacy class directly by finding the |
|
orbit of the element under conjugation in G. This algorithm is only |
|
feasible for permutation groups of relatively small order, but is like |
|
the orbit() function itself in that respect. |
|
""" |
|
|
|
|
|
new_class = {x} |
|
last_iteration = new_class |
|
|
|
while len(last_iteration) > 0: |
|
this_iteration = set() |
|
|
|
for y in last_iteration: |
|
for s in self.generators: |
|
conjugated = s * y * (~s) |
|
if conjugated not in new_class: |
|
this_iteration.add(conjugated) |
|
|
|
new_class.update(last_iteration) |
|
last_iteration = this_iteration |
|
|
|
return new_class |
|
|
|
|
|
def conjugacy_classes(self): |
|
r"""Return the conjugacy classes of the group. |
|
|
|
Explanation |
|
=========== |
|
|
|
As described in the documentation for the .conjugacy_class() function, |
|
conjugacy is an equivalence relation on a group G which partitions the |
|
set of elements. This method returns a list of all these conjugacy |
|
classes of G. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import SymmetricGroup |
|
>>> SymmetricGroup(3).conjugacy_classes() |
|
[{(2)}, {(0 1 2), (0 2 1)}, {(0 2), (1 2), (2)(0 1)}] |
|
|
|
""" |
|
identity = _af_new(list(range(self.degree))) |
|
known_elements = {identity} |
|
classes = [known_elements.copy()] |
|
|
|
for x in self.generate(): |
|
if x not in known_elements: |
|
new_class = self.conjugacy_class(x) |
|
classes.append(new_class) |
|
known_elements.update(new_class) |
|
|
|
return classes |
|
|
|
def normal_closure(self, other, k=10): |
|
r"""Return the normal closure of a subgroup/set of permutations. |
|
|
|
Explanation |
|
=========== |
|
|
|
If ``S`` is a subset of a group ``G``, the normal closure of ``A`` in ``G`` |
|
is defined as the intersection of all normal subgroups of ``G`` that |
|
contain ``A`` ([1], p.14). Alternatively, it is the group generated by |
|
the conjugates ``x^{-1}yx`` for ``x`` a generator of ``G`` and ``y`` a |
|
generator of the subgroup ``\left\langle S\right\rangle`` generated by |
|
``S`` (for some chosen generating set for ``\left\langle S\right\rangle``) |
|
([1], p.73). |
|
|
|
Parameters |
|
========== |
|
|
|
other |
|
a subgroup/list of permutations/single permutation |
|
k |
|
an implementation-specific parameter that determines the number |
|
of conjugates that are adjoined to ``other`` at once |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, |
|
... CyclicGroup, AlternatingGroup) |
|
>>> S = SymmetricGroup(5) |
|
>>> C = CyclicGroup(5) |
|
>>> G = S.normal_closure(C) |
|
>>> G.order() |
|
60 |
|
>>> G.is_subgroup(AlternatingGroup(5)) |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
commutator, derived_subgroup, random_pr |
|
|
|
Notes |
|
===== |
|
|
|
The algorithm is described in [1], pp. 73-74; it makes use of the |
|
generation of random elements for permutation groups by the product |
|
replacement algorithm. |
|
|
|
""" |
|
if hasattr(other, 'generators'): |
|
degree = self.degree |
|
identity = _af_new(list(range(degree))) |
|
|
|
if all(g == identity for g in other.generators): |
|
return other |
|
Z = PermutationGroup(other.generators[:]) |
|
base, strong_gens = Z.schreier_sims_incremental() |
|
strong_gens_distr = _distribute_gens_by_base(base, strong_gens) |
|
basic_orbits, basic_transversals = \ |
|
_orbits_transversals_from_bsgs(base, strong_gens_distr) |
|
|
|
self._random_pr_init(r=10, n=20) |
|
|
|
_loop = True |
|
while _loop: |
|
Z._random_pr_init(r=10, n=10) |
|
for _ in range(k): |
|
g = self.random_pr() |
|
h = Z.random_pr() |
|
conj = h^g |
|
res = _strip(conj, base, basic_orbits, basic_transversals) |
|
if res[0] != identity or res[1] != len(base) + 1: |
|
gens = Z.generators |
|
gens.append(conj) |
|
Z = PermutationGroup(gens) |
|
strong_gens.append(conj) |
|
temp_base, temp_strong_gens = \ |
|
Z.schreier_sims_incremental(base, strong_gens) |
|
base, strong_gens = temp_base, temp_strong_gens |
|
strong_gens_distr = \ |
|
_distribute_gens_by_base(base, strong_gens) |
|
basic_orbits, basic_transversals = \ |
|
_orbits_transversals_from_bsgs(base, |
|
strong_gens_distr) |
|
_loop = False |
|
for g in self.generators: |
|
for h in Z.generators: |
|
conj = h^g |
|
res = _strip(conj, base, basic_orbits, |
|
basic_transversals) |
|
if res[0] != identity or res[1] != len(base) + 1: |
|
_loop = True |
|
break |
|
if _loop: |
|
break |
|
return Z |
|
elif hasattr(other, '__getitem__'): |
|
return self.normal_closure(PermutationGroup(other)) |
|
elif hasattr(other, 'array_form'): |
|
return self.normal_closure(PermutationGroup([other])) |
|
|
|
def orbit(self, alpha, action='tuples'): |
|
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set. |
|
|
|
Explanation |
|
=========== |
|
|
|
The time complexity of the algorithm used here is `O(|Orb|*r)` where |
|
`|Orb|` is the size of the orbit and ``r`` is the number of generators of |
|
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. |
|
Here alpha can be a single point, or a list of points. |
|
|
|
If alpha is a single point, the ordinary orbit is computed. |
|
if alpha is a list of points, there are three available options: |
|
|
|
'union' - computes the union of the orbits of the points in the list |
|
'tuples' - computes the orbit of the list interpreted as an ordered |
|
tuple under the group action ( i.e., g((1,2,3)) = (g(1), g(2), g(3)) ) |
|
'sets' - computes the orbit of the list interpreted as a sets |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3]) |
|
>>> G = PermutationGroup([a]) |
|
>>> G.orbit(0) |
|
{0, 1, 2} |
|
>>> G.orbit([0, 4], 'union') |
|
{0, 1, 2, 3, 4, 5, 6} |
|
|
|
See Also |
|
======== |
|
|
|
orbit_transversal |
|
|
|
""" |
|
return _orbit(self.degree, self.generators, alpha, action) |
|
|
|
def orbit_rep(self, alpha, beta, schreier_vector=None): |
|
"""Return a group element which sends ``alpha`` to ``beta``. |
|
|
|
Explanation |
|
=========== |
|
|
|
If ``beta`` is not in the orbit of ``alpha``, the function returns |
|
``False``. This implementation makes use of the schreier vector. |
|
For a proof of correctness, see [1], p.80 |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import AlternatingGroup |
|
>>> G = AlternatingGroup(5) |
|
>>> G.orbit_rep(0, 4) |
|
(0 4 1 2 3) |
|
|
|
See Also |
|
======== |
|
|
|
schreier_vector |
|
|
|
""" |
|
if schreier_vector is None: |
|
schreier_vector = self.schreier_vector(alpha) |
|
if schreier_vector[beta] is None: |
|
return False |
|
k = schreier_vector[beta] |
|
gens = [x._array_form for x in self.generators] |
|
a = [] |
|
while k != -1: |
|
a.append(gens[k]) |
|
beta = gens[k].index(beta) |
|
k = schreier_vector[beta] |
|
if a: |
|
return _af_new(_af_rmuln(*a)) |
|
else: |
|
return _af_new(list(range(self._degree))) |
|
|
|
def orbit_transversal(self, alpha, pairs=False): |
|
r"""Computes a transversal for the orbit of ``alpha`` as a set. |
|
|
|
Explanation |
|
=========== |
|
|
|
For a permutation group `G`, a transversal for the orbit |
|
`Orb = \{g(\alpha) | g \in G\}` is a set |
|
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`. |
|
Note that there may be more than one possible transversal. |
|
If ``pairs`` is set to ``True``, it returns the list of pairs |
|
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79 |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import DihedralGroup |
|
>>> G = DihedralGroup(6) |
|
>>> G.orbit_transversal(0) |
|
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)] |
|
|
|
See Also |
|
======== |
|
|
|
orbit |
|
|
|
""" |
|
return _orbit_transversal(self._degree, self.generators, alpha, pairs) |
|
|
|
def orbits(self, rep=False): |
|
"""Return the orbits of ``self``, ordered according to lowest element |
|
in each orbit. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation(1, 5)(2, 3)(4, 0, 6) |
|
>>> b = Permutation(1, 5)(3, 4)(2, 6, 0) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> G.orbits() |
|
[{0, 2, 3, 4, 6}, {1, 5}] |
|
""" |
|
return _orbits(self._degree, self._generators) |
|
|
|
def order(self): |
|
"""Return the order of the group: the number of permutations that |
|
can be generated from elements of the group. |
|
|
|
The number of permutations comprising the group is given by |
|
``len(group)``; the length of each permutation in the group is |
|
given by ``group.size``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
|
|
>>> a = Permutation([1, 0, 2]) |
|
>>> G = PermutationGroup([a]) |
|
>>> G.degree |
|
3 |
|
>>> len(G) |
|
1 |
|
>>> G.order() |
|
2 |
|
>>> list(G.generate()) |
|
[(2), (2)(0 1)] |
|
|
|
>>> a = Permutation([0, 2, 1]) |
|
>>> b = Permutation([1, 0, 2]) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> G.order() |
|
6 |
|
|
|
See Also |
|
======== |
|
|
|
degree |
|
|
|
""" |
|
if self._order is not None: |
|
return self._order |
|
if self._is_sym: |
|
n = self._degree |
|
self._order = factorial(n) |
|
return self._order |
|
if self._is_alt: |
|
n = self._degree |
|
self._order = factorial(n)/2 |
|
return self._order |
|
|
|
m = prod([len(x) for x in self.basic_transversals]) |
|
self._order = m |
|
return m |
|
|
|
def index(self, H): |
|
""" |
|
Returns the index of a permutation group. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation(1,2,3) |
|
>>> b =Permutation(3) |
|
>>> G = PermutationGroup([a]) |
|
>>> H = PermutationGroup([b]) |
|
>>> G.index(H) |
|
3 |
|
|
|
""" |
|
if H.is_subgroup(self): |
|
return self.order()//H.order() |
|
|
|
@property |
|
def is_symmetric(self): |
|
"""Return ``True`` if the group is symmetric. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import SymmetricGroup |
|
>>> g = SymmetricGroup(5) |
|
>>> g.is_symmetric |
|
True |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> g = PermutationGroup( |
|
... Permutation(0, 1, 2, 3, 4), |
|
... Permutation(2, 3)) |
|
>>> g.is_symmetric |
|
True |
|
|
|
Notes |
|
===== |
|
|
|
This uses a naive test involving the computation of the full |
|
group order. |
|
If you need more quicker taxonomy for large groups, you can use |
|
:meth:`PermutationGroup.is_alt_sym`. |
|
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate |
|
and is not able to distinguish between an alternating group and |
|
a symmetric group. |
|
|
|
See Also |
|
======== |
|
|
|
is_alt_sym |
|
""" |
|
_is_sym = self._is_sym |
|
if _is_sym is not None: |
|
return _is_sym |
|
|
|
n = self.degree |
|
if n >= 8: |
|
if self.is_transitive(): |
|
_is_alt_sym = self._eval_is_alt_sym_monte_carlo() |
|
if _is_alt_sym: |
|
if any(g.is_odd for g in self.generators): |
|
self._is_sym, self._is_alt = True, False |
|
return True |
|
|
|
self._is_sym, self._is_alt = False, True |
|
return False |
|
|
|
return self._eval_is_alt_sym_naive(only_sym=True) |
|
|
|
self._is_sym, self._is_alt = False, False |
|
return False |
|
|
|
return self._eval_is_alt_sym_naive(only_sym=True) |
|
|
|
|
|
@property |
|
def is_alternating(self): |
|
"""Return ``True`` if the group is alternating. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import AlternatingGroup |
|
>>> g = AlternatingGroup(5) |
|
>>> g.is_alternating |
|
True |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> g = PermutationGroup( |
|
... Permutation(0, 1, 2, 3, 4), |
|
... Permutation(2, 3, 4)) |
|
>>> g.is_alternating |
|
True |
|
|
|
Notes |
|
===== |
|
|
|
This uses a naive test involving the computation of the full |
|
group order. |
|
If you need more quicker taxonomy for large groups, you can use |
|
:meth:`PermutationGroup.is_alt_sym`. |
|
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate |
|
and is not able to distinguish between an alternating group and |
|
a symmetric group. |
|
|
|
See Also |
|
======== |
|
|
|
is_alt_sym |
|
""" |
|
_is_alt = self._is_alt |
|
if _is_alt is not None: |
|
return _is_alt |
|
|
|
n = self.degree |
|
if n >= 8: |
|
if self.is_transitive(): |
|
_is_alt_sym = self._eval_is_alt_sym_monte_carlo() |
|
if _is_alt_sym: |
|
if all(g.is_even for g in self.generators): |
|
self._is_sym, self._is_alt = False, True |
|
return True |
|
|
|
self._is_sym, self._is_alt = True, False |
|
return False |
|
|
|
return self._eval_is_alt_sym_naive(only_alt=True) |
|
|
|
self._is_sym, self._is_alt = False, False |
|
return False |
|
|
|
return self._eval_is_alt_sym_naive(only_alt=True) |
|
|
|
@classmethod |
|
def _distinct_primes_lemma(cls, primes): |
|
"""Subroutine to test if there is only one cyclic group for the |
|
order.""" |
|
primes = sorted(primes) |
|
l = len(primes) |
|
for i in range(l): |
|
for j in range(i+1, l): |
|
if primes[j] % primes[i] == 1: |
|
return None |
|
return True |
|
|
|
@property |
|
def is_cyclic(self): |
|
r""" |
|
Return ``True`` if the group is Cyclic. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import AbelianGroup |
|
>>> G = AbelianGroup(3, 4) |
|
>>> G.is_cyclic |
|
True |
|
>>> G = AbelianGroup(4, 4) |
|
>>> G.is_cyclic |
|
False |
|
|
|
Notes |
|
===== |
|
|
|
If the order of a group $n$ can be factored into the distinct |
|
primes $p_1, p_2, \dots , p_s$ and if |
|
|
|
.. math:: |
|
\forall i, j \in \{1, 2, \dots, s \}: |
|
p_i \not \equiv 1 \pmod {p_j} |
|
|
|
holds true, there is only one group of the order $n$ which |
|
is a cyclic group [1]_. This is a generalization of the lemma |
|
that the group of order $15, 35, \dots$ are cyclic. |
|
|
|
And also, these additional lemmas can be used to test if a |
|
group is cyclic if the order of the group is already found. |
|
|
|
- If the group is abelian and the order of the group is |
|
square-free, the group is cyclic. |
|
- If the order of the group is less than $6$ and is not $4$, the |
|
group is cyclic. |
|
- If the order of the group is prime, the group is cyclic. |
|
|
|
References |
|
========== |
|
|
|
.. [1] 1978: John S. Rose: A Course on Group Theory, |
|
Introduction to Finite Group Theory: 1.4 |
|
""" |
|
if self._is_cyclic is not None: |
|
return self._is_cyclic |
|
|
|
if len(self.generators) == 1: |
|
self._is_cyclic = True |
|
self._is_abelian = True |
|
return True |
|
|
|
if self._is_abelian is False: |
|
self._is_cyclic = False |
|
return False |
|
|
|
order = self.order() |
|
|
|
if order < 6: |
|
self._is_abelian = True |
|
if order != 4: |
|
self._is_cyclic = True |
|
return True |
|
|
|
factors = factorint(order) |
|
if all(v == 1 for v in factors.values()): |
|
if self._is_abelian: |
|
self._is_cyclic = True |
|
return True |
|
|
|
primes = list(factors.keys()) |
|
if PermutationGroup._distinct_primes_lemma(primes) is True: |
|
self._is_cyclic = True |
|
self._is_abelian = True |
|
return True |
|
|
|
if not self.is_abelian: |
|
self._is_cyclic = False |
|
return False |
|
|
|
self._is_cyclic = all( |
|
any(g**(order//p) != self.identity for g in self.generators) |
|
for p, e in factors.items() if e > 1 |
|
) |
|
return self._is_cyclic |
|
|
|
@property |
|
def is_dihedral(self): |
|
r""" |
|
Return ``True`` if the group is dihedral. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.perm_groups import PermutationGroup |
|
>>> from sympy.combinatorics.permutations import Permutation |
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup, CyclicGroup |
|
>>> G = PermutationGroup(Permutation(1, 6)(2, 5)(3, 4), Permutation(0, 1, 2, 3, 4, 5, 6)) |
|
>>> G.is_dihedral |
|
True |
|
>>> G = SymmetricGroup(3) |
|
>>> G.is_dihedral |
|
True |
|
>>> G = CyclicGroup(6) |
|
>>> G.is_dihedral |
|
False |
|
|
|
References |
|
========== |
|
|
|
.. [Di1] https://math.stackexchange.com/questions/827230/given-a-cayley-table-is-there-an-algorithm-to-determine-if-it-is-a-dihedral-gro/827273#827273 |
|
.. [Di2] https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral.pdf |
|
.. [Di3] https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf |
|
.. [Di4] https://en.wikipedia.org/wiki/Dihedral_group |
|
""" |
|
if self._is_dihedral is not None: |
|
return self._is_dihedral |
|
|
|
order = self.order() |
|
|
|
if order % 2 == 1: |
|
self._is_dihedral = False |
|
return False |
|
if order == 2: |
|
self._is_dihedral = True |
|
return True |
|
if order == 4: |
|
|
|
self._is_dihedral = not self.is_cyclic |
|
return self._is_dihedral |
|
if self.is_abelian: |
|
|
|
self._is_dihedral = False |
|
return False |
|
|
|
|
|
n = order // 2 |
|
|
|
|
|
gens = self.generators |
|
if len(gens) == 2: |
|
x, y = gens |
|
a, b = x.order(), y.order() |
|
|
|
if a < b: |
|
x, y, a, b = y, x, b, a |
|
|
|
if a == 2 == b: |
|
self._is_dihedral = True |
|
return True |
|
|
|
if a == n and b == 2 and y*x*y == ~x: |
|
self._is_dihedral = True |
|
return True |
|
|
|
|
|
|
|
order_2, order_n = [], [] |
|
for p in self.elements: |
|
k = p.order() |
|
if k == 2: |
|
order_2.append(p) |
|
elif k == n: |
|
order_n.append(p) |
|
|
|
if len(order_2) != n + 1 - (n % 2): |
|
self._is_dihedral = False |
|
return False |
|
|
|
if not order_n: |
|
self._is_dihedral = False |
|
return False |
|
|
|
x = order_n[0] |
|
|
|
|
|
y = order_2[0] |
|
if n % 2 == 0 and y == x**(n//2): |
|
y = order_2[1] |
|
|
|
self._is_dihedral = (y*x*y == ~x) |
|
return self._is_dihedral |
|
|
|
def pointwise_stabilizer(self, points, incremental=True): |
|
r"""Return the pointwise stabilizer for a set of points. |
|
|
|
Explanation |
|
=========== |
|
|
|
For a permutation group `G` and a set of points |
|
`\{p_1, p_2,\ldots, p_k\}`, the pointwise stabilizer of |
|
`p_1, p_2, \ldots, p_k` is defined as |
|
`G_{p_1,\ldots, p_k} = |
|
\{g\in G | g(p_i) = p_i \forall i\in\{1, 2,\ldots,k\}\}` ([1],p20). |
|
It is a subgroup of `G`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup |
|
>>> S = SymmetricGroup(7) |
|
>>> Stab = S.pointwise_stabilizer([2, 3, 5]) |
|
>>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5)) |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
stabilizer, schreier_sims_incremental |
|
|
|
Notes |
|
===== |
|
|
|
When incremental == True, |
|
rather than the obvious implementation using successive calls to |
|
``.stabilizer()``, this uses the incremental Schreier-Sims algorithm |
|
to obtain a base with starting segment - the given points. |
|
|
|
""" |
|
if incremental: |
|
base, strong_gens = self.schreier_sims_incremental(base=points) |
|
stab_gens = [] |
|
degree = self.degree |
|
for gen in strong_gens: |
|
if [gen(point) for point in points] == points: |
|
stab_gens.append(gen) |
|
if not stab_gens: |
|
stab_gens = _af_new(list(range(degree))) |
|
return PermutationGroup(stab_gens) |
|
else: |
|
gens = self._generators |
|
degree = self.degree |
|
for x in points: |
|
gens = _stabilizer(degree, gens, x) |
|
return PermutationGroup(gens) |
|
|
|
def make_perm(self, n, seed=None): |
|
""" |
|
Multiply ``n`` randomly selected permutations from |
|
pgroup together, starting with the identity |
|
permutation. If ``n`` is a list of integers, those |
|
integers will be used to select the permutations and they |
|
will be applied in L to R order: make_perm((A, B, C)) will |
|
give CBA(I) where I is the identity permutation. |
|
|
|
``seed`` is used to set the seed for the random selection |
|
of permutations from pgroup. If this is a list of integers, |
|
the corresponding permutations from pgroup will be selected |
|
in the order give. This is mainly used for testing purposes. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a, b = [Permutation([1, 0, 3, 2]), Permutation([1, 3, 0, 2])] |
|
>>> G = PermutationGroup([a, b]) |
|
>>> G.make_perm(1, [0]) |
|
(0 1)(2 3) |
|
>>> G.make_perm(3, [0, 1, 0]) |
|
(0 2 3 1) |
|
>>> G.make_perm([0, 1, 0]) |
|
(0 2 3 1) |
|
|
|
See Also |
|
======== |
|
|
|
random |
|
""" |
|
if is_sequence(n): |
|
if seed is not None: |
|
raise ValueError('If n is a sequence, seed should be None') |
|
n, seed = len(n), n |
|
else: |
|
try: |
|
n = int(n) |
|
except TypeError: |
|
raise ValueError('n must be an integer or a sequence.') |
|
randomrange = _randrange(seed) |
|
|
|
|
|
result = Permutation(list(range(self.degree))) |
|
m = len(self) |
|
for _ in range(n): |
|
p = self[randomrange(m)] |
|
result = rmul(result, p) |
|
return result |
|
|
|
def random(self, af=False): |
|
"""Return a random group element |
|
""" |
|
rank = randrange(self.order()) |
|
return self.coset_unrank(rank, af) |
|
|
|
def random_pr(self, gen_count=11, iterations=50, _random_prec=None): |
|
"""Return a random group element using product replacement. |
|
|
|
Explanation |
|
=========== |
|
|
|
For the details of the product replacement algorithm, see |
|
``_random_pr_init`` In ``random_pr`` the actual 'product replacement' |
|
is performed. Notice that if the attribute ``_random_gens`` |
|
is empty, it needs to be initialized by ``_random_pr_init``. |
|
|
|
See Also |
|
======== |
|
|
|
_random_pr_init |
|
|
|
""" |
|
if self._random_gens == []: |
|
self._random_pr_init(gen_count, iterations) |
|
random_gens = self._random_gens |
|
r = len(random_gens) - 1 |
|
|
|
|
|
if _random_prec is None: |
|
s = randrange(r) |
|
t = randrange(r - 1) |
|
if t == s: |
|
t = r - 1 |
|
x = choice([1, 2]) |
|
e = choice([-1, 1]) |
|
else: |
|
s = _random_prec['s'] |
|
t = _random_prec['t'] |
|
if t == s: |
|
t = r - 1 |
|
x = _random_prec['x'] |
|
e = _random_prec['e'] |
|
|
|
if x == 1: |
|
random_gens[s] = _af_rmul(random_gens[s], _af_pow(random_gens[t], e)) |
|
random_gens[r] = _af_rmul(random_gens[r], random_gens[s]) |
|
else: |
|
random_gens[s] = _af_rmul(_af_pow(random_gens[t], e), random_gens[s]) |
|
random_gens[r] = _af_rmul(random_gens[s], random_gens[r]) |
|
return _af_new(random_gens[r]) |
|
|
|
def random_stab(self, alpha, schreier_vector=None, _random_prec=None): |
|
"""Random element from the stabilizer of ``alpha``. |
|
|
|
The schreier vector for ``alpha`` is an optional argument used |
|
for speeding up repeated calls. The algorithm is described in [1], p.81 |
|
|
|
See Also |
|
======== |
|
|
|
random_pr, orbit_rep |
|
|
|
""" |
|
if schreier_vector is None: |
|
schreier_vector = self.schreier_vector(alpha) |
|
if _random_prec is None: |
|
rand = self.random_pr() |
|
else: |
|
rand = _random_prec['rand'] |
|
beta = rand(alpha) |
|
h = self.orbit_rep(alpha, beta, schreier_vector) |
|
return rmul(~h, rand) |
|
|
|
def schreier_sims(self): |
|
"""Schreier-Sims algorithm. |
|
|
|
Explanation |
|
=========== |
|
|
|
It computes the generators of the chain of stabilizers |
|
`G > G_{b_1} > .. > G_{b1,..,b_r} > 1` |
|
in which `G_{b_1,..,b_i}` stabilizes `b_1,..,b_i`, |
|
and the corresponding ``s`` cosets. |
|
An element of the group can be written as the product |
|
`h_1*..*h_s`. |
|
|
|
We use the incremental Schreier-Sims algorithm. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([0, 2, 1]) |
|
>>> b = Permutation([1, 0, 2]) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> G.schreier_sims() |
|
>>> G.basic_transversals |
|
[{0: (2)(0 1), 1: (2), 2: (1 2)}, |
|
{0: (2), 2: (0 2)}] |
|
""" |
|
if self._transversals: |
|
return |
|
self._schreier_sims() |
|
return |
|
|
|
def _schreier_sims(self, base=None): |
|
schreier = self.schreier_sims_incremental(base=base, slp_dict=True) |
|
base, strong_gens = schreier[:2] |
|
self._base = base |
|
self._strong_gens = strong_gens |
|
self._strong_gens_slp = schreier[2] |
|
if not base: |
|
self._transversals = [] |
|
self._basic_orbits = [] |
|
return |
|
|
|
strong_gens_distr = _distribute_gens_by_base(base, strong_gens) |
|
basic_orbits, transversals, slps = _orbits_transversals_from_bsgs(base,\ |
|
strong_gens_distr, slp=True) |
|
|
|
|
|
for i, slp in enumerate(slps): |
|
gens = strong_gens_distr[i] |
|
for k in slp: |
|
slp[k] = [strong_gens.index(gens[s]) for s in slp[k]] |
|
|
|
self._transversals = transversals |
|
self._basic_orbits = [sorted(x) for x in basic_orbits] |
|
self._transversal_slp = slps |
|
|
|
def schreier_sims_incremental(self, base=None, gens=None, slp_dict=False): |
|
"""Extend a sequence of points and generating set to a base and strong |
|
generating set. |
|
|
|
Parameters |
|
========== |
|
|
|
base |
|
The sequence of points to be extended to a base. Optional |
|
parameter with default value ``[]``. |
|
gens |
|
The generating set to be extended to a strong generating set |
|
relative to the base obtained. Optional parameter with default |
|
value ``self.generators``. |
|
|
|
slp_dict |
|
If `True`, return a dictionary `{g: gens}` for each strong |
|
generator `g` where `gens` is a list of strong generators |
|
coming before `g` in `strong_gens`, such that the product |
|
of the elements of `gens` is equal to `g`. |
|
|
|
Returns |
|
======= |
|
|
|
(base, strong_gens) |
|
``base`` is the base obtained, and ``strong_gens`` is the strong |
|
generating set relative to it. The original parameters ``base``, |
|
``gens`` remain unchanged. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import AlternatingGroup |
|
>>> from sympy.combinatorics.testutil import _verify_bsgs |
|
>>> A = AlternatingGroup(7) |
|
>>> base = [2, 3] |
|
>>> seq = [2, 3] |
|
>>> base, strong_gens = A.schreier_sims_incremental(base=seq) |
|
>>> _verify_bsgs(A, base, strong_gens) |
|
True |
|
>>> base[:2] |
|
[2, 3] |
|
|
|
Notes |
|
===== |
|
|
|
This version of the Schreier-Sims algorithm runs in polynomial time. |
|
There are certain assumptions in the implementation - if the trivial |
|
group is provided, ``base`` and ``gens`` are returned immediately, |
|
as any sequence of points is a base for the trivial group. If the |
|
identity is present in the generators ``gens``, it is removed as |
|
it is a redundant generator. |
|
The implementation is described in [1], pp. 90-93. |
|
|
|
See Also |
|
======== |
|
|
|
schreier_sims, schreier_sims_random |
|
|
|
""" |
|
if base is None: |
|
base = [] |
|
if gens is None: |
|
gens = self.generators[:] |
|
degree = self.degree |
|
id_af = list(range(degree)) |
|
|
|
if len(gens) == 1 and gens[0].is_Identity: |
|
if slp_dict: |
|
return base, gens, {gens[0]: [gens[0]]} |
|
return base, gens |
|
|
|
_base, _gens = base[:], gens[:] |
|
|
|
_gens = [x for x in _gens if not x.is_Identity] |
|
|
|
for gen in _gens: |
|
if all(x == gen._array_form[x] for x in _base): |
|
for new in id_af: |
|
if gen._array_form[new] != new: |
|
break |
|
else: |
|
assert None |
|
_base.append(new) |
|
|
|
strong_gens_distr = _distribute_gens_by_base(_base, _gens) |
|
strong_gens_slp = [] |
|
|
|
orbs = {} |
|
transversals = {} |
|
slps = {} |
|
base_len = len(_base) |
|
for i in range(base_len): |
|
transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i], |
|
_base[i], pairs=True, af=True, slp=True) |
|
transversals[i] = dict(transversals[i]) |
|
orbs[i] = list(transversals[i].keys()) |
|
|
|
|
|
i = base_len - 1 |
|
while i >= 0: |
|
|
|
|
|
continue_i = False |
|
|
|
db = {} |
|
for beta, u_beta in list(transversals[i].items()): |
|
for j, gen in enumerate(strong_gens_distr[i]): |
|
gb = gen._array_form[beta] |
|
u1 = transversals[i][gb] |
|
g1 = _af_rmul(gen._array_form, u_beta) |
|
slp = [(i, g) for g in slps[i][beta]] |
|
slp = [(i, j)] + slp |
|
if g1 != u1: |
|
|
|
|
|
y = True |
|
try: |
|
u1_inv = db[gb] |
|
except KeyError: |
|
u1_inv = db[gb] = _af_invert(u1) |
|
schreier_gen = _af_rmul(u1_inv, g1) |
|
u1_inv_slp = slps[i][gb][:] |
|
u1_inv_slp.reverse() |
|
u1_inv_slp = [(i, (g,)) for g in u1_inv_slp] |
|
slp = u1_inv_slp + slp |
|
h, j, slp = _strip_af(schreier_gen, _base, orbs, transversals, i, slp=slp, slps=slps) |
|
if j <= base_len: |
|
|
|
y = False |
|
elif h: |
|
|
|
y = False |
|
moved = 0 |
|
while h[moved] == moved: |
|
moved += 1 |
|
_base.append(moved) |
|
base_len += 1 |
|
strong_gens_distr.append([]) |
|
if y is False: |
|
|
|
|
|
h = _af_new(h) |
|
strong_gens_slp.append((h, slp)) |
|
for l in range(i + 1, j): |
|
strong_gens_distr[l].append(h) |
|
transversals[l], slps[l] =\ |
|
_orbit_transversal(degree, strong_gens_distr[l], |
|
_base[l], pairs=True, af=True, slp=True) |
|
transversals[l] = dict(transversals[l]) |
|
orbs[l] = list(transversals[l].keys()) |
|
i = j - 1 |
|
|
|
continue_i = True |
|
if continue_i is True: |
|
break |
|
if continue_i is True: |
|
break |
|
if continue_i is True: |
|
continue |
|
i -= 1 |
|
|
|
strong_gens = _gens[:] |
|
|
|
if slp_dict: |
|
|
|
|
|
|
|
for k, slp in strong_gens_slp: |
|
strong_gens.append(k) |
|
for i in range(len(slp)): |
|
s = slp[i] |
|
if isinstance(s[1], tuple): |
|
slp[i] = strong_gens_distr[s[0]][s[1][0]]**-1 |
|
else: |
|
slp[i] = strong_gens_distr[s[0]][s[1]] |
|
strong_gens_slp = dict(strong_gens_slp) |
|
|
|
for g in _gens: |
|
strong_gens_slp[g] = [g] |
|
return (_base, strong_gens, strong_gens_slp) |
|
|
|
strong_gens.extend([k for k, _ in strong_gens_slp]) |
|
return _base, strong_gens |
|
|
|
def schreier_sims_random(self, base=None, gens=None, consec_succ=10, |
|
_random_prec=None): |
|
r"""Randomized Schreier-Sims algorithm. |
|
|
|
Explanation |
|
=========== |
|
|
|
The randomized Schreier-Sims algorithm takes the sequence ``base`` |
|
and the generating set ``gens``, and extends ``base`` to a base, and |
|
``gens`` to a strong generating set relative to that base with |
|
probability of a wrong answer at most `2^{-consec\_succ}`, |
|
provided the random generators are sufficiently random. |
|
|
|
Parameters |
|
========== |
|
|
|
base |
|
The sequence to be extended to a base. |
|
gens |
|
The generating set to be extended to a strong generating set. |
|
consec_succ |
|
The parameter defining the probability of a wrong answer. |
|
_random_prec |
|
An internal parameter used for testing purposes. |
|
|
|
Returns |
|
======= |
|
|
|
(base, strong_gens) |
|
``base`` is the base and ``strong_gens`` is the strong generating |
|
set relative to it. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.testutil import _verify_bsgs |
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup |
|
>>> S = SymmetricGroup(5) |
|
>>> base, strong_gens = S.schreier_sims_random(consec_succ=5) |
|
>>> _verify_bsgs(S, base, strong_gens) #doctest: +SKIP |
|
True |
|
|
|
Notes |
|
===== |
|
|
|
The algorithm is described in detail in [1], pp. 97-98. It extends |
|
the orbits ``orbs`` and the permutation groups ``stabs`` to |
|
basic orbits and basic stabilizers for the base and strong generating |
|
set produced in the end. |
|
The idea of the extension process |
|
is to "sift" random group elements through the stabilizer chain |
|
and amend the stabilizers/orbits along the way when a sift |
|
is not successful. |
|
The helper function ``_strip`` is used to attempt |
|
to decompose a random group element according to the current |
|
state of the stabilizer chain and report whether the element was |
|
fully decomposed (successful sift) or not (unsuccessful sift). In |
|
the latter case, the level at which the sift failed is reported and |
|
used to amend ``stabs``, ``base``, ``gens`` and ``orbs`` accordingly. |
|
The halting condition is for ``consec_succ`` consecutive successful |
|
sifts to pass. This makes sure that the current ``base`` and ``gens`` |
|
form a BSGS with probability at least `1 - 1/\text{consec\_succ}`. |
|
|
|
See Also |
|
======== |
|
|
|
schreier_sims |
|
|
|
""" |
|
if base is None: |
|
base = [] |
|
if gens is None: |
|
gens = self.generators |
|
base_len = len(base) |
|
n = self.degree |
|
|
|
for gen in gens: |
|
if all(gen(x) == x for x in base): |
|
new = 0 |
|
while gen._array_form[new] == new: |
|
new += 1 |
|
base.append(new) |
|
base_len += 1 |
|
|
|
strong_gens_distr = _distribute_gens_by_base(base, gens) |
|
|
|
transversals = {} |
|
orbs = {} |
|
for i in range(base_len): |
|
transversals[i] = dict(_orbit_transversal(n, strong_gens_distr[i], |
|
base[i], pairs=True)) |
|
orbs[i] = list(transversals[i].keys()) |
|
|
|
c = 0 |
|
|
|
|
|
while c < consec_succ: |
|
if _random_prec is None: |
|
g = self.random_pr() |
|
else: |
|
g = _random_prec['g'].pop() |
|
h, j = _strip(g, base, orbs, transversals) |
|
y = True |
|
|
|
if j <= base_len: |
|
y = False |
|
elif not h.is_Identity: |
|
y = False |
|
moved = 0 |
|
while h(moved) == moved: |
|
moved += 1 |
|
base.append(moved) |
|
base_len += 1 |
|
strong_gens_distr.append([]) |
|
|
|
|
|
if y is False: |
|
for l in range(1, j): |
|
strong_gens_distr[l].append(h) |
|
transversals[l] = dict(_orbit_transversal(n, |
|
strong_gens_distr[l], base[l], pairs=True)) |
|
orbs[l] = list(transversals[l].keys()) |
|
c = 0 |
|
else: |
|
c += 1 |
|
|
|
strong_gens = strong_gens_distr[0][:] |
|
for gen in strong_gens_distr[1]: |
|
if gen not in strong_gens: |
|
strong_gens.append(gen) |
|
return base, strong_gens |
|
|
|
def schreier_vector(self, alpha): |
|
"""Computes the schreier vector for ``alpha``. |
|
|
|
Explanation |
|
=========== |
|
|
|
The Schreier vector efficiently stores information |
|
about the orbit of ``alpha``. It can later be used to quickly obtain |
|
elements of the group that send ``alpha`` to a particular element |
|
in the orbit. Notice that the Schreier vector depends on the order |
|
in which the group generators are listed. For a definition, see [3]. |
|
Since list indices start from zero, we adopt the convention to use |
|
"None" instead of 0 to signify that an element does not belong |
|
to the orbit. |
|
For the algorithm and its correctness, see [2], pp.78-80. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([2, 4, 6, 3, 1, 5, 0]) |
|
>>> b = Permutation([0, 1, 3, 5, 4, 6, 2]) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> G.schreier_vector(0) |
|
[-1, None, 0, 1, None, 1, 0] |
|
|
|
See Also |
|
======== |
|
|
|
orbit |
|
|
|
""" |
|
n = self.degree |
|
v = [None]*n |
|
v[alpha] = -1 |
|
orb = [alpha] |
|
used = [False]*n |
|
used[alpha] = True |
|
gens = self.generators |
|
r = len(gens) |
|
for b in orb: |
|
for i in range(r): |
|
temp = gens[i]._array_form[b] |
|
if used[temp] is False: |
|
orb.append(temp) |
|
used[temp] = True |
|
v[temp] = i |
|
return v |
|
|
|
def stabilizer(self, alpha): |
|
r"""Return the stabilizer subgroup of ``alpha``. |
|
|
|
Explanation |
|
=========== |
|
|
|
The stabilizer of `\alpha` is the group `G_\alpha = |
|
\{g \in G | g(\alpha) = \alpha\}`. |
|
For a proof of correctness, see [1], p.79. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import DihedralGroup |
|
>>> G = DihedralGroup(6) |
|
>>> G.stabilizer(5) |
|
PermutationGroup([ |
|
(5)(0 4)(1 3)]) |
|
|
|
See Also |
|
======== |
|
|
|
orbit |
|
|
|
""" |
|
return PermGroup(_stabilizer(self._degree, self._generators, alpha)) |
|
|
|
@property |
|
def strong_gens(self): |
|
r"""Return a strong generating set from the Schreier-Sims algorithm. |
|
|
|
Explanation |
|
=========== |
|
|
|
A generating set `S = \{g_1, g_2, \dots, g_t\}` for a permutation group |
|
`G` is a strong generating set relative to the sequence of points |
|
(referred to as a "base") `(b_1, b_2, \dots, b_k)` if, for |
|
`1 \leq i \leq k` we have that the intersection of the pointwise |
|
stabilizer `G^{(i+1)} := G_{b_1, b_2, \dots, b_i}` with `S` generates |
|
the pointwise stabilizer `G^{(i+1)}`. The concepts of a base and |
|
strong generating set and their applications are discussed in depth |
|
in [1], pp. 87-89 and [2], pp. 55-57. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import DihedralGroup |
|
>>> D = DihedralGroup(4) |
|
>>> D.strong_gens |
|
[(0 1 2 3), (0 3)(1 2), (1 3)] |
|
>>> D.base |
|
[0, 1] |
|
|
|
See Also |
|
======== |
|
|
|
base, basic_transversals, basic_orbits, basic_stabilizers |
|
|
|
""" |
|
if self._strong_gens == []: |
|
self.schreier_sims() |
|
return self._strong_gens |
|
|
|
def subgroup(self, gens): |
|
""" |
|
Return the subgroup generated by `gens` which is a list of |
|
elements of the group |
|
""" |
|
|
|
if not all(g in self for g in gens): |
|
raise ValueError("The group does not contain the supplied generators") |
|
|
|
G = PermutationGroup(gens) |
|
return G |
|
|
|
def subgroup_search(self, prop, base=None, strong_gens=None, tests=None, |
|
init_subgroup=None): |
|
"""Find the subgroup of all elements satisfying the property ``prop``. |
|
|
|
Explanation |
|
=========== |
|
|
|
This is done by a depth-first search with respect to base images that |
|
uses several tests to prune the search tree. |
|
|
|
Parameters |
|
========== |
|
|
|
prop |
|
The property to be used. Has to be callable on group elements |
|
and always return ``True`` or ``False``. It is assumed that |
|
all group elements satisfying ``prop`` indeed form a subgroup. |
|
base |
|
A base for the supergroup. |
|
strong_gens |
|
A strong generating set for the supergroup. |
|
tests |
|
A list of callables of length equal to the length of ``base``. |
|
These are used to rule out group elements by partial base images, |
|
so that ``tests[l](g)`` returns False if the element ``g`` is known |
|
not to satisfy prop base on where g sends the first ``l + 1`` base |
|
points. |
|
init_subgroup |
|
if a subgroup of the sought group is |
|
known in advance, it can be passed to the function as this |
|
parameter. |
|
|
|
Returns |
|
======= |
|
|
|
res |
|
The subgroup of all elements satisfying ``prop``. The generating |
|
set for this group is guaranteed to be a strong generating set |
|
relative to the base ``base``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, |
|
... AlternatingGroup) |
|
>>> from sympy.combinatorics.testutil import _verify_bsgs |
|
>>> S = SymmetricGroup(7) |
|
>>> prop_even = lambda x: x.is_even |
|
>>> base, strong_gens = S.schreier_sims_incremental() |
|
>>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_gens) |
|
>>> G.is_subgroup(AlternatingGroup(7)) |
|
True |
|
>>> _verify_bsgs(G, base, G.generators) |
|
True |
|
|
|
Notes |
|
===== |
|
|
|
This function is extremely lengthy and complicated and will require |
|
some careful attention. The implementation is described in |
|
[1], pp. 114-117, and the comments for the code here follow the lines |
|
of the pseudocode in the book for clarity. |
|
|
|
The complexity is exponential in general, since the search process by |
|
itself visits all members of the supergroup. However, there are a lot |
|
of tests which are used to prune the search tree, and users can define |
|
their own tests via the ``tests`` parameter, so in practice, and for |
|
some computations, it's not terrible. |
|
|
|
A crucial part in the procedure is the frequent base change performed |
|
(this is line 11 in the pseudocode) in order to obtain a new basic |
|
stabilizer. The book mentiones that this can be done by using |
|
``.baseswap(...)``, however the current implementation uses a more |
|
straightforward way to find the next basic stabilizer - calling the |
|
function ``.stabilizer(...)`` on the previous basic stabilizer. |
|
|
|
""" |
|
|
|
def get_reps(orbits): |
|
|
|
return [min(orbit, key = lambda x: base_ordering[x]) \ |
|
for orbit in orbits] |
|
|
|
def update_nu(l): |
|
temp_index = len(basic_orbits[l]) + 1 -\ |
|
len(res_basic_orbits_init_base[l]) |
|
|
|
if temp_index >= len(sorted_orbits[l]): |
|
nu[l] = base_ordering[degree] |
|
else: |
|
nu[l] = sorted_orbits[l][temp_index] |
|
|
|
if base is None: |
|
base, strong_gens = self.schreier_sims_incremental() |
|
base_len = len(base) |
|
degree = self.degree |
|
identity = _af_new(list(range(degree))) |
|
base_ordering = _base_ordering(base, degree) |
|
|
|
base_ordering.append(degree) |
|
|
|
base_ordering.append(-1) |
|
|
|
strong_gens_distr = _distribute_gens_by_base(base, strong_gens) |
|
basic_orbits, transversals = _orbits_transversals_from_bsgs(base, |
|
strong_gens_distr) |
|
|
|
if init_subgroup is None: |
|
init_subgroup = PermutationGroup([identity]) |
|
if tests is None: |
|
trivial_test = lambda x: True |
|
tests = [] |
|
for i in range(base_len): |
|
tests.append(trivial_test) |
|
|
|
res = init_subgroup |
|
f = base_len - 1 |
|
l = base_len - 1 |
|
|
|
res_base = base[:] |
|
|
|
res_base, res_strong_gens = res.schreier_sims_incremental( |
|
base=res_base) |
|
res_strong_gens_distr = _distribute_gens_by_base(res_base, |
|
res_strong_gens) |
|
res_generators = res.generators |
|
res_basic_orbits_init_base = \ |
|
[_orbit(degree, res_strong_gens_distr[i], res_base[i])\ |
|
for i in range(base_len)] |
|
|
|
orbit_reps = [None]*base_len |
|
|
|
orbits = _orbits(degree, res_strong_gens_distr[f]) |
|
orbit_reps[f] = get_reps(orbits) |
|
|
|
|
|
orbit_reps[f].remove(base[f]) |
|
|
|
c = [0]*base_len |
|
u = [identity]*base_len |
|
sorted_orbits = [None]*base_len |
|
for i in range(base_len): |
|
sorted_orbits[i] = basic_orbits[i][:] |
|
sorted_orbits[i].sort(key=lambda point: base_ordering[point]) |
|
|
|
mu = [None]*base_len |
|
nu = [None]*base_len |
|
|
|
mu[l] = degree + 1 |
|
update_nu(l) |
|
|
|
computed_words = [identity]*base_len |
|
|
|
while True: |
|
|
|
while l < base_len - 1 and \ |
|
computed_words[l](base[l]) in orbit_reps[l] and \ |
|
base_ordering[mu[l]] < \ |
|
base_ordering[computed_words[l](base[l])] < \ |
|
base_ordering[nu[l]] and \ |
|
tests[l](computed_words): |
|
|
|
new_point = computed_words[l](base[l]) |
|
res_base[l] = new_point |
|
new_stab_gens = _stabilizer(degree, res_strong_gens_distr[l], |
|
new_point) |
|
res_strong_gens_distr[l + 1] = new_stab_gens |
|
|
|
|
|
orbits = _orbits(degree, new_stab_gens) |
|
orbit_reps[l + 1] = get_reps(orbits) |
|
|
|
l += 1 |
|
temp_orbit = [computed_words[l - 1](point) for point |
|
in basic_orbits[l]] |
|
temp_orbit.sort(key=lambda point: base_ordering[point]) |
|
sorted_orbits[l] = temp_orbit |
|
|
|
new_mu = degree + 1 |
|
for i in range(l): |
|
if base[l] in res_basic_orbits_init_base[i]: |
|
candidate = computed_words[i](base[i]) |
|
if base_ordering[candidate] > base_ordering[new_mu]: |
|
new_mu = candidate |
|
mu[l] = new_mu |
|
update_nu(l) |
|
|
|
c[l] = 0 |
|
temp_point = sorted_orbits[l][c[l]] |
|
gamma = computed_words[l - 1]._array_form.index(temp_point) |
|
u[l] = transversals[l][gamma] |
|
|
|
computed_words[l] = rmul(computed_words[l - 1], u[l]) |
|
|
|
g = computed_words[l] |
|
temp_point = g(base[l]) |
|
if l == base_len - 1 and \ |
|
base_ordering[mu[l]] < \ |
|
base_ordering[temp_point] < base_ordering[nu[l]] and \ |
|
temp_point in orbit_reps[l] and \ |
|
tests[l](computed_words) and \ |
|
prop(g): |
|
|
|
res_generators.append(g) |
|
res_base = base[:] |
|
|
|
res_strong_gens.append(g) |
|
res_strong_gens_distr = _distribute_gens_by_base(res_base, |
|
res_strong_gens) |
|
res_basic_orbits_init_base = \ |
|
[_orbit(degree, res_strong_gens_distr[i], res_base[i]) \ |
|
for i in range(base_len)] |
|
|
|
|
|
orbit_reps[f] = get_reps(orbits) |
|
l = f |
|
|
|
|
|
while l >= 0 and c[l] == len(basic_orbits[l]) - 1: |
|
l = l - 1 |
|
|
|
if l == -1: |
|
return PermutationGroup(res_generators) |
|
|
|
if l < f: |
|
|
|
f = l |
|
c[l] = 0 |
|
|
|
temp_orbits = _orbits(degree, res_strong_gens_distr[f]) |
|
orbit_reps[f] = get_reps(temp_orbits) |
|
|
|
mu[l] = degree + 1 |
|
temp_index = len(basic_orbits[l]) + 1 - \ |
|
len(res_basic_orbits_init_base[l]) |
|
if temp_index >= len(sorted_orbits[l]): |
|
nu[l] = base_ordering[degree] |
|
else: |
|
nu[l] = sorted_orbits[l][temp_index] |
|
|
|
|
|
c[l] += 1 |
|
if l == 0: |
|
gamma = sorted_orbits[l][c[l]] |
|
else: |
|
gamma = computed_words[l - 1]._array_form.index(sorted_orbits[l][c[l]]) |
|
|
|
u[l] = transversals[l][gamma] |
|
if l == 0: |
|
computed_words[l] = u[l] |
|
else: |
|
computed_words[l] = rmul(computed_words[l - 1], u[l]) |
|
|
|
@property |
|
def transitivity_degree(self): |
|
r"""Compute the degree of transitivity of the group. |
|
|
|
Explanation |
|
=========== |
|
|
|
A permutation group `G` acting on `\Omega = \{0, 1, \dots, n-1\}` is |
|
``k``-fold transitive, if, for any `k` points |
|
`(a_1, a_2, \dots, a_k) \in \Omega` and any `k` points |
|
`(b_1, b_2, \dots, b_k) \in \Omega` there exists `g \in G` such that |
|
`g(a_1) = b_1, g(a_2) = b_2, \dots, g(a_k) = b_k` |
|
The degree of transitivity of `G` is the maximum ``k`` such that |
|
`G` is ``k``-fold transitive. ([8]) |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> a = Permutation([1, 2, 0]) |
|
>>> b = Permutation([1, 0, 2]) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> G.transitivity_degree |
|
3 |
|
|
|
See Also |
|
======== |
|
|
|
is_transitive, orbit |
|
|
|
""" |
|
if self._transitivity_degree is None: |
|
n = self.degree |
|
G = self |
|
|
|
|
|
|
|
|
|
|
|
|
|
for i in range(n): |
|
orb = G.orbit(i) |
|
if len(orb) != n - i: |
|
self._transitivity_degree = i |
|
return i |
|
G = G.stabilizer(i) |
|
self._transitivity_degree = n |
|
return n |
|
else: |
|
return self._transitivity_degree |
|
|
|
def _p_elements_group(self, p): |
|
''' |
|
For an abelian p-group, return the subgroup consisting of |
|
all elements of order p (and the identity) |
|
|
|
''' |
|
gens = self.generators[:] |
|
gens = sorted(gens, key=lambda x: x.order(), reverse=True) |
|
gens_p = [g**(g.order()/p) for g in gens] |
|
gens_r = [] |
|
for i in range(len(gens)): |
|
x = gens[i] |
|
x_order = x.order() |
|
|
|
x_p = x**(x_order/p) |
|
if i > 0: |
|
P = PermutationGroup(gens_p[:i]) |
|
else: |
|
P = PermutationGroup(self.identity) |
|
if x**(x_order/p) not in P: |
|
gens_r.append(x**(x_order/p)) |
|
else: |
|
|
|
|
|
g = P.generator_product(x_p, original=True) |
|
for s in g: |
|
x = x*s**-1 |
|
x_order = x_order/p |
|
|
|
del gens[i] |
|
del gens_p[i] |
|
j = i - 1 |
|
while j < len(gens) and gens[j].order() >= x_order: |
|
j += 1 |
|
gens = gens[:j] + [x] + gens[j:] |
|
gens_p = gens_p[:j] + [x] + gens_p[j:] |
|
return PermutationGroup(gens_r) |
|
|
|
def _sylow_alt_sym(self, p): |
|
''' |
|
Return a p-Sylow subgroup of a symmetric or an |
|
alternating group. |
|
|
|
Explanation |
|
=========== |
|
|
|
The algorithm for this is hinted at in [1], Chapter 4, |
|
Exercise 4. |
|
|
|
For Sym(n) with n = p^i, the idea is as follows. Partition |
|
the interval [0..n-1] into p equal parts, each of length p^(i-1): |
|
[0..p^(i-1)-1], [p^(i-1)..2*p^(i-1)-1]...[(p-1)*p^(i-1)..p^i-1]. |
|
Find a p-Sylow subgroup of Sym(p^(i-1)) (treated as a subgroup |
|
of ``self``) acting on each of the parts. Call the subgroups |
|
P_1, P_2...P_p. The generators for the subgroups P_2...P_p |
|
can be obtained from those of P_1 by applying a "shifting" |
|
permutation to them, that is, a permutation mapping [0..p^(i-1)-1] |
|
to the second part (the other parts are obtained by using the shift |
|
multiple times). The union of this permutation and the generators |
|
of P_1 is a p-Sylow subgroup of ``self``. |
|
|
|
For n not equal to a power of p, partition |
|
[0..n-1] in accordance with how n would be written in base p. |
|
E.g. for p=2 and n=11, 11 = 2^3 + 2^2 + 1 so the partition |
|
is [[0..7], [8..9], {10}]. To generate a p-Sylow subgroup, |
|
take the union of the generators for each of the parts. |
|
For the above example, {(0 1), (0 2)(1 3), (0 4), (1 5)(2 7)} |
|
from the first part, {(8 9)} from the second part and |
|
nothing from the third. This gives 4 generators in total, and |
|
the subgroup they generate is p-Sylow. |
|
|
|
Alternating groups are treated the same except when p=2. In this |
|
case, (0 1)(s s+1) should be added for an appropriate s (the start |
|
of a part) for each part in the partitions. |
|
|
|
See Also |
|
======== |
|
|
|
sylow_subgroup, is_alt_sym |
|
|
|
''' |
|
n = self.degree |
|
gens = [] |
|
identity = Permutation(n-1) |
|
|
|
|
|
alt = p == 2 and all(g.is_even for g in self.generators) |
|
|
|
|
|
coeffs = [] |
|
m = n |
|
while m > 0: |
|
coeffs.append(m % p) |
|
m = m // p |
|
|
|
power = len(coeffs)-1 |
|
|
|
|
|
|
|
for i in range(1, power+1): |
|
if i == 1 and alt: |
|
|
|
continue |
|
gen = Permutation([(j + p**(i-1)) % p**i for j in range(p**i)]) |
|
gens.append(identity*gen) |
|
if alt: |
|
gen = Permutation(0, 1)*gen*Permutation(0, 1)*gen |
|
gens.append(gen) |
|
|
|
|
|
|
|
start = 0 |
|
|
|
while power > 0: |
|
a = coeffs[power] |
|
|
|
|
|
|
|
for _ in range(a): |
|
shift = Permutation() |
|
if start > 0: |
|
for i in range(p**power): |
|
shift = shift(i, start + i) |
|
|
|
if alt: |
|
gen = Permutation(0, 1)*shift*Permutation(0, 1)*shift |
|
gens.append(gen) |
|
j = 2*(power - 1) |
|
else: |
|
j = power |
|
|
|
for i, gen in enumerate(gens[:j]): |
|
if alt and i % 2 == 1: |
|
continue |
|
|
|
|
|
gen = shift*gen*shift |
|
gens.append(gen) |
|
|
|
start += p**power |
|
power = power-1 |
|
|
|
return gens |
|
|
|
def sylow_subgroup(self, p): |
|
''' |
|
Return a p-Sylow subgroup of the group. |
|
|
|
The algorithm is described in [1], Chapter 4, Section 7 |
|
|
|
Examples |
|
======== |
|
>>> from sympy.combinatorics.named_groups import DihedralGroup |
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup |
|
>>> from sympy.combinatorics.named_groups import AlternatingGroup |
|
|
|
>>> D = DihedralGroup(6) |
|
>>> S = D.sylow_subgroup(2) |
|
>>> S.order() |
|
4 |
|
>>> G = SymmetricGroup(6) |
|
>>> S = G.sylow_subgroup(5) |
|
>>> S.order() |
|
5 |
|
|
|
>>> G1 = AlternatingGroup(3) |
|
>>> G2 = AlternatingGroup(5) |
|
>>> G3 = AlternatingGroup(9) |
|
|
|
>>> S1 = G1.sylow_subgroup(3) |
|
>>> S2 = G2.sylow_subgroup(3) |
|
>>> S3 = G3.sylow_subgroup(3) |
|
|
|
>>> len1 = len(S1.lower_central_series()) |
|
>>> len2 = len(S2.lower_central_series()) |
|
>>> len3 = len(S3.lower_central_series()) |
|
|
|
>>> len1 == len2 |
|
True |
|
>>> len1 < len3 |
|
True |
|
|
|
''' |
|
from sympy.combinatorics.homomorphisms import ( |
|
orbit_homomorphism, block_homomorphism) |
|
|
|
if not isprime(p): |
|
raise ValueError("p must be a prime") |
|
|
|
def is_p_group(G): |
|
|
|
|
|
m = G.order() |
|
n = 0 |
|
while m % p == 0: |
|
m = m/p |
|
n += 1 |
|
if m == 1: |
|
return True, n |
|
return False, n |
|
|
|
def _sylow_reduce(mu, nu): |
|
|
|
|
|
|
|
Q = mu.image().sylow_subgroup(p) |
|
Q = mu.invert_subgroup(Q) |
|
nu = nu.restrict_to(Q) |
|
R = nu.image().sylow_subgroup(p) |
|
return nu.invert_subgroup(R) |
|
|
|
order = self.order() |
|
if order % p != 0: |
|
return PermutationGroup([self.identity]) |
|
p_group, n = is_p_group(self) |
|
if p_group: |
|
return self |
|
|
|
if self.is_alt_sym(): |
|
return PermutationGroup(self._sylow_alt_sym(p)) |
|
|
|
|
|
|
|
|
|
orbits = self.orbits() |
|
non_p_orbits = [o for o in orbits if len(o) % p != 0 and len(o) != 1] |
|
if non_p_orbits: |
|
G = self.stabilizer(list(non_p_orbits[0]).pop()) |
|
return G.sylow_subgroup(p) |
|
|
|
if not self.is_transitive(): |
|
|
|
orbits = sorted(orbits, key=len) |
|
omega1 = orbits.pop() |
|
omega2 = orbits[0].union(*orbits) |
|
mu = orbit_homomorphism(self, omega1) |
|
nu = orbit_homomorphism(self, omega2) |
|
return _sylow_reduce(mu, nu) |
|
|
|
blocks = self.minimal_blocks() |
|
if len(blocks) > 1: |
|
|
|
mu = block_homomorphism(self, blocks[0]) |
|
nu = block_homomorphism(self, blocks[1]) |
|
return _sylow_reduce(mu, nu) |
|
elif len(blocks) == 1: |
|
block = list(blocks)[0] |
|
if any(e != 0 for e in block): |
|
|
|
mu = block_homomorphism(self, block) |
|
if not is_p_group(mu.image())[0]: |
|
S = mu.image().sylow_subgroup(p) |
|
return mu.invert_subgroup(S).sylow_subgroup(p) |
|
|
|
|
|
g = self.random() |
|
g_order = g.order() |
|
while g_order % p != 0 or g_order == 0: |
|
g = self.random() |
|
g_order = g.order() |
|
g = g**(g_order // p) |
|
if order % p**2 != 0: |
|
return PermutationGroup(g) |
|
|
|
C = self.centralizer(g) |
|
while C.order() % p**n != 0: |
|
S = C.sylow_subgroup(p) |
|
s_order = S.order() |
|
Z = S.center() |
|
P = Z._p_elements_group(p) |
|
h = P.random() |
|
C_h = self.centralizer(h) |
|
while C_h.order() % p*s_order != 0: |
|
h = P.random() |
|
C_h = self.centralizer(h) |
|
C = C_h |
|
|
|
return C.sylow_subgroup(p) |
|
|
|
def _block_verify(self, L, alpha): |
|
delta = sorted(self.orbit(alpha)) |
|
|
|
|
|
p = [-1]*len(delta) |
|
blocks = [-1]*len(delta) |
|
|
|
B = [[]] |
|
u = [0]*len(delta) |
|
|
|
t = L.orbit_transversal(alpha, pairs=True) |
|
for a, beta in t: |
|
B[0].append(a) |
|
i_a = delta.index(a) |
|
p[i_a] = 0 |
|
blocks[i_a] = alpha |
|
u[i_a] = beta |
|
|
|
rho = 0 |
|
m = 0 |
|
|
|
while rho <= m: |
|
beta = B[rho][0] |
|
for g in self.generators: |
|
d = beta^g |
|
i_d = delta.index(d) |
|
sigma = p[i_d] |
|
if sigma < 0: |
|
|
|
m += 1 |
|
sigma = m |
|
u[i_d] = u[delta.index(beta)]*g |
|
p[i_d] = sigma |
|
rep = d |
|
blocks[i_d] = rep |
|
newb = [rep] |
|
for gamma in B[rho][1:]: |
|
i_gamma = delta.index(gamma) |
|
d = gamma^g |
|
i_d = delta.index(d) |
|
if p[i_d] < 0: |
|
u[i_d] = u[i_gamma]*g |
|
p[i_d] = sigma |
|
blocks[i_d] = rep |
|
newb.append(d) |
|
else: |
|
|
|
s = u[i_gamma]*g*u[i_d]**(-1) |
|
return False, s |
|
|
|
B.append(newb) |
|
else: |
|
for h in B[rho][1:]: |
|
if h^g not in B[sigma]: |
|
|
|
s = u[delta.index(beta)]*g*u[i_d]**(-1) |
|
return False, s |
|
rho += 1 |
|
|
|
return True, blocks |
|
|
|
def _verify(H, K, phi, z, alpha): |
|
''' |
|
Return a list of relators ``rels`` in generators ``gens`_h` that |
|
are mapped to ``H.generators`` by ``phi`` so that given a finite |
|
presentation <gens_k | rels_k> of ``K`` on a subset of ``gens_h`` |
|
<gens_h | rels_k + rels> is a finite presentation of ``H``. |
|
|
|
Explanation |
|
=========== |
|
|
|
``H`` should be generated by the union of ``K.generators`` and ``z`` |
|
(a single generator), and ``H.stabilizer(alpha) == K``; ``phi`` is a |
|
canonical injection from a free group into a permutation group |
|
containing ``H``. |
|
|
|
The algorithm is described in [1], Chapter 6. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import free_group, Permutation, PermutationGroup |
|
>>> from sympy.combinatorics.homomorphisms import homomorphism |
|
>>> from sympy.combinatorics.fp_groups import FpGroup |
|
|
|
>>> H = PermutationGroup(Permutation(0, 2), Permutation (1, 5)) |
|
>>> K = PermutationGroup(Permutation(5)(0, 2)) |
|
>>> F = free_group("x_0 x_1")[0] |
|
>>> gens = F.generators |
|
>>> phi = homomorphism(F, H, F.generators, H.generators) |
|
>>> rels_k = [gens[0]**2] # relators for presentation of K |
|
>>> z= Permutation(1, 5) |
|
>>> check, rels_h = H._verify(K, phi, z, 1) |
|
>>> check |
|
True |
|
>>> rels = rels_k + rels_h |
|
>>> G = FpGroup(F, rels) # presentation of H |
|
>>> G.order() == H.order() |
|
True |
|
|
|
See also |
|
======== |
|
|
|
strong_presentation, presentation, stabilizer |
|
|
|
''' |
|
|
|
orbit = H.orbit(alpha) |
|
beta = alpha^(z**-1) |
|
|
|
K_beta = K.stabilizer(beta) |
|
|
|
|
|
gammas = [alpha, beta] |
|
orbits = list({tuple(K_beta.orbit(o)) for o in orbit}) |
|
orbit_reps = [orb[0] for orb in orbits] |
|
for rep in orbit_reps: |
|
if rep not in gammas: |
|
gammas.append(rep) |
|
|
|
|
|
betas = [alpha, beta] |
|
transversal = {alpha: phi.invert(H.identity), beta: phi.invert(z**-1)} |
|
|
|
for s, g in K.orbit_transversal(beta, pairs=True): |
|
if s not in transversal: |
|
transversal[s] = transversal[beta]*phi.invert(g) |
|
|
|
|
|
union = K.orbit(alpha).union(K.orbit(beta)) |
|
while (len(union) < len(orbit)): |
|
for gamma in gammas: |
|
if gamma in union: |
|
r = gamma^z |
|
if r not in union: |
|
betas.append(r) |
|
transversal[r] = transversal[gamma]*phi.invert(z) |
|
for s, g in K.orbit_transversal(r, pairs=True): |
|
if s not in transversal: |
|
transversal[s] = transversal[r]*phi.invert(g) |
|
union = union.union(K.orbit(r)) |
|
break |
|
|
|
|
|
rels = [] |
|
|
|
for b in betas: |
|
k_gens = K.stabilizer(b).generators |
|
for y in k_gens: |
|
new_rel = transversal[b] |
|
gens = K.generator_product(y, original=True) |
|
for g in gens[::-1]: |
|
new_rel = new_rel*phi.invert(g) |
|
new_rel = new_rel*transversal[b]**-1 |
|
|
|
perm = phi(new_rel) |
|
try: |
|
gens = K.generator_product(perm, original=True) |
|
except ValueError: |
|
return False, perm |
|
for g in gens: |
|
new_rel = new_rel*phi.invert(g)**-1 |
|
if new_rel not in rels: |
|
rels.append(new_rel) |
|
|
|
for gamma in gammas: |
|
new_rel = transversal[gamma]*phi.invert(z)*transversal[gamma^z]**-1 |
|
perm = phi(new_rel) |
|
try: |
|
gens = K.generator_product(perm, original=True) |
|
except ValueError: |
|
return False, perm |
|
for g in gens: |
|
new_rel = new_rel*phi.invert(g)**-1 |
|
if new_rel not in rels: |
|
rels.append(new_rel) |
|
|
|
return True, rels |
|
|
|
def strong_presentation(self): |
|
''' |
|
Return a strong finite presentation of group. The generators |
|
of the returned group are in the same order as the strong |
|
generators of group. |
|
|
|
The algorithm is based on Sims' Verify algorithm described |
|
in [1], Chapter 6. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import DihedralGroup |
|
>>> P = DihedralGroup(4) |
|
>>> G = P.strong_presentation() |
|
>>> P.order() == G.order() |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
presentation, _verify |
|
|
|
''' |
|
from sympy.combinatorics.fp_groups import (FpGroup, |
|
simplify_presentation) |
|
from sympy.combinatorics.free_groups import free_group |
|
from sympy.combinatorics.homomorphisms import (block_homomorphism, |
|
homomorphism, GroupHomomorphism) |
|
|
|
strong_gens = self.strong_gens[:] |
|
stabs = self.basic_stabilizers[:] |
|
base = self.base[:] |
|
|
|
|
|
|
|
gen_syms = [('x_%d'%i) for i in range(len(strong_gens))] |
|
F = free_group(', '.join(gen_syms))[0] |
|
phi = homomorphism(F, self, F.generators, strong_gens) |
|
|
|
H = PermutationGroup(self.identity) |
|
while stabs: |
|
alpha = base.pop() |
|
K = H |
|
H = stabs.pop() |
|
new_gens = [g for g in H.generators if g not in K] |
|
|
|
if K.order() == 1: |
|
z = new_gens.pop() |
|
rels = [F.generators[-1]**z.order()] |
|
intermediate_gens = [z] |
|
K = PermutationGroup(intermediate_gens) |
|
|
|
|
|
while new_gens: |
|
z = new_gens.pop() |
|
intermediate_gens = [z] + intermediate_gens |
|
K_s = PermutationGroup(intermediate_gens) |
|
orbit = K_s.orbit(alpha) |
|
orbit_k = K.orbit(alpha) |
|
|
|
|
|
if orbit_k == orbit: |
|
if z in K: |
|
rel = phi.invert(z) |
|
perm = z |
|
else: |
|
t = K.orbit_rep(alpha, alpha^z) |
|
rel = phi.invert(z)*phi.invert(t)**-1 |
|
perm = z*t**-1 |
|
for g in K.generator_product(perm, original=True): |
|
rel = rel*phi.invert(g)**-1 |
|
new_rels = [rel] |
|
elif len(orbit_k) == 1: |
|
|
|
|
|
|
|
|
|
|
|
|
|
success, new_rels = K_s._verify(K, phi, z, alpha) |
|
else: |
|
|
|
|
|
check, block = K_s._block_verify(K, alpha) |
|
if check: |
|
|
|
|
|
|
|
|
|
t = block_homomorphism(K_s, block) |
|
m = t.codomain.degree |
|
d = K_s.degree |
|
|
|
|
|
|
|
|
|
|
|
p = Permutation() |
|
for i in range(m): |
|
p *= Permutation(i, i+d) |
|
|
|
t_img = t.images |
|
|
|
|
|
images = {g: g*p*t_img[g]*p for g in t_img} |
|
for g in self.strong_gens[:-len(K_s.generators)]: |
|
images[g] = g |
|
K_s_act = PermutationGroup(list(images.values())) |
|
f = GroupHomomorphism(self, K_s_act, images) |
|
|
|
K_act = PermutationGroup([f(g) for g in K.generators]) |
|
success, new_rels = K_s_act._verify(K_act, f.compose(phi), f(z), d) |
|
|
|
for n in new_rels: |
|
if n not in rels: |
|
rels.append(n) |
|
K = K_s |
|
|
|
group = FpGroup(F, rels) |
|
return simplify_presentation(group) |
|
|
|
def presentation(self, eliminate_gens=True): |
|
''' |
|
Return an `FpGroup` presentation of the group. |
|
|
|
The algorithm is described in [1], Chapter 6.1. |
|
|
|
''' |
|
from sympy.combinatorics.fp_groups import (FpGroup, |
|
simplify_presentation) |
|
from sympy.combinatorics.coset_table import CosetTable |
|
from sympy.combinatorics.free_groups import free_group |
|
from sympy.combinatorics.homomorphisms import homomorphism |
|
|
|
if self._fp_presentation: |
|
return self._fp_presentation |
|
|
|
def _factor_group_by_rels(G, rels): |
|
if isinstance(G, FpGroup): |
|
rels.extend(G.relators) |
|
return FpGroup(G.free_group, list(set(rels))) |
|
return FpGroup(G, rels) |
|
|
|
gens = self.generators |
|
len_g = len(gens) |
|
|
|
if len_g == 1: |
|
order = gens[0].order() |
|
|
|
if order == 1: |
|
return free_group([])[0] |
|
F, x = free_group('x') |
|
return FpGroup(F, [x**order]) |
|
|
|
if self.order() > 20: |
|
half_gens = self.generators[0:(len_g+1)//2] |
|
else: |
|
half_gens = [] |
|
H = PermutationGroup(half_gens) |
|
H_p = H.presentation() |
|
|
|
len_h = len(H_p.generators) |
|
|
|
C = self.coset_table(H) |
|
n = len(C) |
|
|
|
gen_syms = [('x_%d'%i) for i in range(len(gens))] |
|
F = free_group(', '.join(gen_syms))[0] |
|
|
|
|
|
images = [F.generators[i] for i in range(len_h)] |
|
R = homomorphism(H_p, F, H_p.generators, images, check=False) |
|
|
|
|
|
rels = R(H_p.relators) |
|
G_p = FpGroup(F, rels) |
|
|
|
|
|
T = homomorphism(G_p, self, G_p.generators, gens) |
|
|
|
C_p = CosetTable(G_p, []) |
|
|
|
C_p.table = [[None]*(2*len_g) for i in range(n)] |
|
|
|
|
|
transversal = [None]*n |
|
transversal[0] = G_p.identity |
|
|
|
|
|
for i in range(2*len_h): |
|
C_p.table[0][i] = 0 |
|
|
|
gamma = 1 |
|
for alpha, x in product(range(n), range(2*len_g)): |
|
beta = C[alpha][x] |
|
if beta == gamma: |
|
gen = G_p.generators[x//2]**((-1)**(x % 2)) |
|
transversal[beta] = transversal[alpha]*gen |
|
C_p.table[alpha][x] = beta |
|
C_p.table[beta][x + (-1)**(x % 2)] = alpha |
|
gamma += 1 |
|
if gamma == n: |
|
break |
|
|
|
C_p.p = list(range(n)) |
|
beta = x = 0 |
|
|
|
while not C_p.is_complete(): |
|
|
|
while C_p.table[beta][x] == C[beta][x]: |
|
x = (x + 1) % (2*len_g) |
|
if x == 0: |
|
beta = (beta + 1) % n |
|
|
|
|
|
gen = G_p.generators[x//2]**((-1)**(x % 2)) |
|
new_rel = transversal[beta]*gen*transversal[C[beta][x]]**-1 |
|
perm = T(new_rel) |
|
nxt = G_p.identity |
|
for s in H.generator_product(perm, original=True): |
|
nxt = nxt*T.invert(s)**-1 |
|
new_rel = new_rel*nxt |
|
|
|
|
|
G_p = _factor_group_by_rels(G_p, [new_rel]) |
|
C_p.scan_and_fill(0, new_rel) |
|
C_p = G_p.coset_enumeration([], strategy="coset_table", |
|
draft=C_p, max_cosets=n, incomplete=True) |
|
|
|
self._fp_presentation = simplify_presentation(G_p) |
|
return self._fp_presentation |
|
|
|
def polycyclic_group(self): |
|
""" |
|
Return the PolycyclicGroup instance with below parameters: |
|
|
|
Explanation |
|
=========== |
|
|
|
* pc_sequence : Polycyclic sequence is formed by collecting all |
|
the missing generators between the adjacent groups in the |
|
derived series of given permutation group. |
|
|
|
* pc_series : Polycyclic series is formed by adding all the missing |
|
generators of ``der[i+1]`` in ``der[i]``, where ``der`` represents |
|
the derived series. |
|
|
|
* relative_order : A list, computed by the ratio of adjacent groups in |
|
pc_series. |
|
|
|
""" |
|
from sympy.combinatorics.pc_groups import PolycyclicGroup |
|
if not self.is_polycyclic: |
|
raise ValueError("The group must be solvable") |
|
|
|
der = self.derived_series() |
|
pc_series = [] |
|
pc_sequence = [] |
|
relative_order = [] |
|
pc_series.append(der[-1]) |
|
der.reverse() |
|
|
|
for i in range(len(der)-1): |
|
H = der[i] |
|
for g in der[i+1].generators: |
|
if g not in H: |
|
H = PermutationGroup([g] + H.generators) |
|
pc_series.insert(0, H) |
|
pc_sequence.insert(0, g) |
|
|
|
G1 = pc_series[0].order() |
|
G2 = pc_series[1].order() |
|
relative_order.insert(0, G1 // G2) |
|
|
|
return PolycyclicGroup(pc_sequence, pc_series, relative_order, collector=None) |
|
|
|
|
|
def _orbit(degree, generators, alpha, action='tuples'): |
|
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set. |
|
|
|
Explanation |
|
=========== |
|
|
|
The time complexity of the algorithm used here is `O(|Orb|*r)` where |
|
`|Orb|` is the size of the orbit and ``r`` is the number of generators of |
|
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. |
|
Here alpha can be a single point, or a list of points. |
|
|
|
If alpha is a single point, the ordinary orbit is computed. |
|
if alpha is a list of points, there are three available options: |
|
|
|
'union' - computes the union of the orbits of the points in the list |
|
'tuples' - computes the orbit of the list interpreted as an ordered |
|
tuple under the group action ( i.e., g((1, 2, 3)) = (g(1), g(2), g(3)) ) |
|
'sets' - computes the orbit of the list interpreted as a sets |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup |
|
>>> from sympy.combinatorics.perm_groups import _orbit |
|
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3]) |
|
>>> G = PermutationGroup([a]) |
|
>>> _orbit(G.degree, G.generators, 0) |
|
{0, 1, 2} |
|
>>> _orbit(G.degree, G.generators, [0, 4], 'union') |
|
{0, 1, 2, 3, 4, 5, 6} |
|
|
|
See Also |
|
======== |
|
|
|
orbit, orbit_transversal |
|
|
|
""" |
|
if not hasattr(alpha, '__getitem__'): |
|
alpha = [alpha] |
|
|
|
gens = [x._array_form for x in generators] |
|
if len(alpha) == 1 or action == 'union': |
|
orb = alpha |
|
used = [False]*degree |
|
for el in alpha: |
|
used[el] = True |
|
for b in orb: |
|
for gen in gens: |
|
temp = gen[b] |
|
if used[temp] == False: |
|
orb.append(temp) |
|
used[temp] = True |
|
return set(orb) |
|
elif action == 'tuples': |
|
alpha = tuple(alpha) |
|
orb = [alpha] |
|
used = {alpha} |
|
for b in orb: |
|
for gen in gens: |
|
temp = tuple([gen[x] for x in b]) |
|
if temp not in used: |
|
orb.append(temp) |
|
used.add(temp) |
|
return set(orb) |
|
elif action == 'sets': |
|
alpha = frozenset(alpha) |
|
orb = [alpha] |
|
used = {alpha} |
|
for b in orb: |
|
for gen in gens: |
|
temp = frozenset([gen[x] for x in b]) |
|
if temp not in used: |
|
orb.append(temp) |
|
used.add(temp) |
|
return {tuple(x) for x in orb} |
|
|
|
|
|
def _orbits(degree, generators): |
|
"""Compute the orbits of G. |
|
|
|
If ``rep=False`` it returns a list of sets else it returns a list of |
|
representatives of the orbits |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation |
|
>>> from sympy.combinatorics.perm_groups import _orbits |
|
>>> a = Permutation([0, 2, 1]) |
|
>>> b = Permutation([1, 0, 2]) |
|
>>> _orbits(a.size, [a, b]) |
|
[{0, 1, 2}] |
|
""" |
|
|
|
orbs = [] |
|
sorted_I = list(range(degree)) |
|
I = set(sorted_I) |
|
while I: |
|
i = sorted_I[0] |
|
orb = _orbit(degree, generators, i) |
|
orbs.append(orb) |
|
|
|
I -= orb |
|
sorted_I = [i for i in sorted_I if i not in orb] |
|
return orbs |
|
|
|
|
|
def _orbit_transversal(degree, generators, alpha, pairs, af=False, slp=False): |
|
r"""Computes a transversal for the orbit of ``alpha`` as a set. |
|
|
|
Explanation |
|
=========== |
|
|
|
generators generators of the group ``G`` |
|
|
|
For a permutation group ``G``, a transversal for the orbit |
|
`Orb = \{g(\alpha) | g \in G\}` is a set |
|
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`. |
|
Note that there may be more than one possible transversal. |
|
If ``pairs`` is set to ``True``, it returns the list of pairs |
|
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79 |
|
|
|
if ``af`` is ``True``, the transversal elements are given in |
|
array form. |
|
|
|
If `slp` is `True`, a dictionary `{beta: slp_beta}` is returned |
|
for `\beta \in Orb` where `slp_beta` is a list of indices of the |
|
generators in `generators` s.t. if `slp_beta = [i_1 \dots i_n]` |
|
`g_\beta = generators[i_n] \times \dots \times generators[i_1]`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import DihedralGroup |
|
>>> from sympy.combinatorics.perm_groups import _orbit_transversal |
|
>>> G = DihedralGroup(6) |
|
>>> _orbit_transversal(G.degree, G.generators, 0, False) |
|
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)] |
|
""" |
|
|
|
tr = [(alpha, list(range(degree)))] |
|
slp_dict = {alpha: []} |
|
used = [False]*degree |
|
used[alpha] = True |
|
gens = [x._array_form for x in generators] |
|
for x, px in tr: |
|
px_slp = slp_dict[x] |
|
for gen in gens: |
|
temp = gen[x] |
|
if used[temp] == False: |
|
slp_dict[temp] = [gens.index(gen)] + px_slp |
|
tr.append((temp, _af_rmul(gen, px))) |
|
used[temp] = True |
|
if pairs: |
|
if not af: |
|
tr = [(x, _af_new(y)) for x, y in tr] |
|
if not slp: |
|
return tr |
|
return tr, slp_dict |
|
|
|
if af: |
|
tr = [y for _, y in tr] |
|
if not slp: |
|
return tr |
|
return tr, slp_dict |
|
|
|
tr = [_af_new(y) for _, y in tr] |
|
if not slp: |
|
return tr |
|
return tr, slp_dict |
|
|
|
|
|
def _stabilizer(degree, generators, alpha): |
|
r"""Return the stabilizer subgroup of ``alpha``. |
|
|
|
Explanation |
|
=========== |
|
|
|
The stabilizer of `\alpha` is the group `G_\alpha = |
|
\{g \in G | g(\alpha) = \alpha\}`. |
|
For a proof of correctness, see [1], p.79. |
|
|
|
degree : degree of G |
|
generators : generators of G |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.perm_groups import _stabilizer |
|
>>> from sympy.combinatorics.named_groups import DihedralGroup |
|
>>> G = DihedralGroup(6) |
|
>>> _stabilizer(G.degree, G.generators, 5) |
|
[(5)(0 4)(1 3), (5)] |
|
|
|
See Also |
|
======== |
|
|
|
orbit |
|
|
|
""" |
|
orb = [alpha] |
|
table = {alpha: list(range(degree))} |
|
table_inv = {alpha: list(range(degree))} |
|
used = [False]*degree |
|
used[alpha] = True |
|
gens = [x._array_form for x in generators] |
|
stab_gens = [] |
|
for b in orb: |
|
for gen in gens: |
|
temp = gen[b] |
|
if used[temp] is False: |
|
gen_temp = _af_rmul(gen, table[b]) |
|
orb.append(temp) |
|
table[temp] = gen_temp |
|
table_inv[temp] = _af_invert(gen_temp) |
|
used[temp] = True |
|
else: |
|
schreier_gen = _af_rmuln(table_inv[temp], gen, table[b]) |
|
if schreier_gen not in stab_gens: |
|
stab_gens.append(schreier_gen) |
|
return [_af_new(x) for x in stab_gens] |
|
|
|
|
|
PermGroup = PermutationGroup |
|
|
|
|
|
class SymmetricPermutationGroup(Basic): |
|
""" |
|
The class defining the lazy form of SymmetricGroup. |
|
|
|
deg : int |
|
|
|
""" |
|
def __new__(cls, deg): |
|
deg = _sympify(deg) |
|
obj = Basic.__new__(cls, deg) |
|
return obj |
|
|
|
def __init__(self, *args, **kwargs): |
|
self._deg = self.args[0] |
|
self._order = None |
|
|
|
def __contains__(self, i): |
|
"""Return ``True`` if *i* is contained in SymmetricPermutationGroup. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, SymmetricPermutationGroup |
|
>>> G = SymmetricPermutationGroup(4) |
|
>>> Permutation(1, 2, 3) in G |
|
True |
|
|
|
""" |
|
if not isinstance(i, Permutation): |
|
raise TypeError("A SymmetricPermutationGroup contains only Permutations as " |
|
"elements, not elements of type %s" % type(i)) |
|
return i.size == self.degree |
|
|
|
def order(self): |
|
""" |
|
Return the order of the SymmetricPermutationGroup. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import SymmetricPermutationGroup |
|
>>> G = SymmetricPermutationGroup(4) |
|
>>> G.order() |
|
24 |
|
""" |
|
if self._order is not None: |
|
return self._order |
|
n = self._deg |
|
self._order = factorial(n) |
|
return self._order |
|
|
|
@property |
|
def degree(self): |
|
""" |
|
Return the degree of the SymmetricPermutationGroup. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import SymmetricPermutationGroup |
|
>>> G = SymmetricPermutationGroup(4) |
|
>>> G.degree |
|
4 |
|
|
|
""" |
|
return self._deg |
|
|
|
@property |
|
def identity(self): |
|
''' |
|
Return the identity element of the SymmetricPermutationGroup. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import SymmetricPermutationGroup |
|
>>> G = SymmetricPermutationGroup(4) |
|
>>> G.identity() |
|
(3) |
|
|
|
''' |
|
return _af_new(list(range(self._deg))) |
|
|
|
|
|
class Coset(Basic): |
|
"""A left coset of a permutation group with respect to an element. |
|
|
|
Parameters |
|
========== |
|
|
|
g : Permutation |
|
|
|
H : PermutationGroup |
|
|
|
dir : "+" or "-", If not specified by default it will be "+" |
|
here ``dir`` specified the type of coset "+" represent the |
|
right coset and "-" represent the left coset. |
|
|
|
G : PermutationGroup, optional |
|
The group which contains *H* as its subgroup and *g* as its |
|
element. |
|
|
|
If not specified, it would automatically become a symmetric |
|
group ``SymmetricPermutationGroup(g.size)`` and |
|
``SymmetricPermutationGroup(H.degree)`` if ``g.size`` and ``H.degree`` |
|
are matching.``SymmetricPermutationGroup`` is a lazy form of SymmetricGroup |
|
used for representation purpose. |
|
|
|
""" |
|
|
|
def __new__(cls, g, H, G=None, dir="+"): |
|
g = _sympify(g) |
|
if not isinstance(g, Permutation): |
|
raise NotImplementedError |
|
|
|
H = _sympify(H) |
|
if not isinstance(H, PermutationGroup): |
|
raise NotImplementedError |
|
|
|
if G is not None: |
|
G = _sympify(G) |
|
if not isinstance(G, (PermutationGroup, SymmetricPermutationGroup)): |
|
raise NotImplementedError |
|
if not H.is_subgroup(G): |
|
raise ValueError("{} must be a subgroup of {}.".format(H, G)) |
|
if g not in G: |
|
raise ValueError("{} must be an element of {}.".format(g, G)) |
|
else: |
|
g_size = g.size |
|
h_degree = H.degree |
|
if g_size != h_degree: |
|
raise ValueError( |
|
"The size of the permutation {} and the degree of " |
|
"the permutation group {} should be matching " |
|
.format(g, H)) |
|
G = SymmetricPermutationGroup(g.size) |
|
|
|
if isinstance(dir, str): |
|
dir = Symbol(dir) |
|
elif not isinstance(dir, Symbol): |
|
raise TypeError("dir must be of type basestring or " |
|
"Symbol, not %s" % type(dir)) |
|
if str(dir) not in ('+', '-'): |
|
raise ValueError("dir must be one of '+' or '-' not %s" % dir) |
|
obj = Basic.__new__(cls, g, H, G, dir) |
|
return obj |
|
|
|
def __init__(self, *args, **kwargs): |
|
self._dir = self.args[3] |
|
|
|
@property |
|
def is_left_coset(self): |
|
""" |
|
Check if the coset is left coset that is ``gH``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup, Coset |
|
>>> a = Permutation(1, 2) |
|
>>> b = Permutation(0, 1) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> cst = Coset(a, G, dir="-") |
|
>>> cst.is_left_coset |
|
True |
|
|
|
""" |
|
return str(self._dir) == '-' |
|
|
|
@property |
|
def is_right_coset(self): |
|
""" |
|
Check if the coset is right coset that is ``Hg``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, PermutationGroup, Coset |
|
>>> a = Permutation(1, 2) |
|
>>> b = Permutation(0, 1) |
|
>>> G = PermutationGroup([a, b]) |
|
>>> cst = Coset(a, G, dir="+") |
|
>>> cst.is_right_coset |
|
True |
|
|
|
""" |
|
return str(self._dir) == '+' |
|
|
|
def as_list(self): |
|
""" |
|
Return all the elements of coset in the form of list. |
|
""" |
|
g = self.args[0] |
|
H = self.args[1] |
|
cst = [] |
|
if str(self._dir) == '+': |
|
for h in H.elements: |
|
cst.append(h*g) |
|
else: |
|
for h in H.elements: |
|
cst.append(g*h) |
|
return cst |
|
|