jamino30's picture
Upload folder using huggingface_hub
f1ac6b9 verified
raw
history blame
7.19 kB
import os
import time
import datetime
from tqdm import tqdm
import spaces
import torch
import torch.optim as optim
import gradio as gr
from utils import preprocess_img, preprocess_img_from_path, postprocess_img
from vgg19 import VGG_19
if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)
if device == 'cuda': print('CUDA DEVICE:', torch.cuda.get_device_name())
model = VGG_19().to(device).eval()
for param in model.parameters():
param.requires_grad = False
style_files = os.listdir('./style_images')
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
optimal_settings = {
'Starry Night': (100, False),
'Lego Bricks': (100, False),
'Mosaic': (100, False),
'Oil Painting': (100, False),
'Scream': (75, True),
'Great Wave': (75, False),
'Watercolor': (10, False),
}
cached_style_features = {}
for style_name, style_img_path in style_options.items():
style_img_512 = preprocess_img_from_path(style_img_path, 512)[0].to(device)
style_img_1024 = preprocess_img_from_path(style_img_path, 1024)[0].to(device)
with torch.no_grad():
style_features = (model(style_img_512), model(style_img_1024))
cached_style_features[style_name] = style_features
def compute_loss(generated_features, content_features, style_features, alpha, beta):
content_loss = 0
style_loss = 0
for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
batch_size, n_feature_maps, height, width = generated_feature.size()
content_loss += torch.mean((generated_feature - content_feature) ** 2)
G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
E_l = ((G - A) ** 2)
w_l = 1 / 5
style_loss += torch.mean(w_l * E_l)
return alpha * content_loss + beta * style_loss
@spaces.GPU(duration=20)
def inference(content_image, style_name, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
yield None
print('-'*15)
print('DATETIME:', datetime.datetime.now())
print('STYLE:', style_name)
img_size = 1024 if output_quality else 512
content_img, original_size = preprocess_img(content_image, img_size)
content_img = content_img.to(device)
print('CONTENT IMG SIZE:', original_size)
print('STYLE STRENGTH:', style_strength)
print('HIGH QUALITY:', output_quality)
iters = 35
lr = 0.001 + (0.099 / 99) * (style_strength - 1) # [0.001, 0.1]
alpha = 1
beta = 1
st = time.time()
generated_img = content_img.clone().requires_grad_(True)
optimizer = optim.AdamW([generated_img], lr=lr)
with torch.no_grad():
content_features = model(content_img)
style_features = cached_style_features[style_name][0 if img_size == 512 else 1]
for _ in tqdm(range(iters), desc='The magic is happening ✨'):
optimizer.zero_grad()
generated_features = model(generated_img)
total_loss = compute_loss(generated_features, content_features, style_features, alpha, beta)
total_loss.backward()
optimizer.step()
et = time.time()
print('TIME TAKEN:', et-st)
yield postprocess_img(generated_img, original_size)
def set_slider(value):
return gr.update(value=value)
def update_settings(style):
return optimal_settings.get(style, (50, True))
css = """
#container {
margin: 0 auto;
max-width: 550px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
with gr.Column(elem_id='container'):
content_and_output = gr.Image(label='Content', show_label=False, type='pil', sources=['upload', 'webcam', 'clipboard'], format='jpg', show_download_button=False)
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', info='Note: Adjustments automatically optimize for different styles.', value='Starry Night', type='value')
with gr.Accordion('Adjustments', open=False):
with gr.Group():
style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=100, step=1, value=50)
with gr.Row():
low_button = gr.Button('Low', size='sm').click(fn=lambda: set_slider(10), outputs=[style_strength_slider])
medium_button = gr.Button('Medium', size='sm').click(fn=lambda: set_slider(50), outputs=[style_strength_slider])
high_button = gr.Button('High', size='sm').click(fn=lambda: set_slider(100), outputs=[style_strength_slider])
with gr.Group():
output_quality = gr.Checkbox(label='More Realistic', info='Note: If unchecked, the resulting image will have a more artistic flair.')
submit_button = gr.Button('Submit', variant='primary')
download_button = gr.DownloadButton(label='Download Image', visible=False)
def save_image(img):
filename = 'generated.jpg'
img.save(filename)
return filename
submit_button.click(
fn=inference,
inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality],
outputs=[content_and_output]
).then(
fn=save_image,
inputs=[content_and_output],
outputs=[download_button]
).then(
fn=lambda: gr.update(visible=True),
outputs=[download_button]
)
content_and_output.change(
fn=lambda _: gr.update(visible=False),
inputs=[content_and_output],
outputs=[download_button]
)
style_dropdown.change(
fn=lambda style: set_slider(update_settings(style)[0]),
inputs=[style_dropdown],
outputs=[style_strength_slider]
)
style_dropdown.change(
fn=lambda style: gr.update(value=update_settings(style)[1]),
inputs=[style_dropdown],
outputs=[output_quality]
)
examples = gr.Examples(
examples=[
['./content_images/Bridge.jpg', 'Starry Night', *optimal_settings['Starry Night']],
['./content_images/GoldenRetriever.jpg', 'Lego Bricks', *optimal_settings['Lego Bricks']],
['./content_images/SeaTurtle.jpg', 'Oil Painting', *optimal_settings['Oil Painting']],
['./content_images/NYCSkyline.jpg', 'Scream', *optimal_settings['Scream']]
],
inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality]
)
demo.queue = False
demo.config['queue'] = False
demo.launch(show_api=False)