Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import time | |
import datetime | |
from tqdm import tqdm | |
import spaces | |
import torch | |
import torch.optim as optim | |
import gradio as gr | |
from utils import preprocess_img, preprocess_img_from_path, postprocess_img | |
from vgg19 import VGG_19 | |
if torch.cuda.is_available(): device = 'cuda' | |
elif torch.backends.mps.is_available(): device = 'mps' | |
else: device = 'cpu' | |
print('DEVICE:', device) | |
if device == 'cuda': print('CUDA DEVICE:', torch.cuda.get_device_name()) | |
model = VGG_19().to(device) | |
for param in model.parameters(): | |
param.requires_grad = False | |
style_files = os.listdir('./style_images') | |
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files} | |
optimal_settings = { | |
'Starry Night': (100, True), | |
'Lego Bricks': (100, False), | |
'Mosaic': (100, False), | |
'Oil Painting': (100, False), | |
'Scream': (75, True), | |
'Great Wave': (75, False), | |
'Watercolor': (10, False), | |
} | |
cached_style_features = {} | |
for style_name, style_img_path in style_options.items(): | |
style_img_512 = preprocess_img_from_path(style_img_path, 512)[0].to(device) | |
style_img_1024 = preprocess_img_from_path(style_img_path, 1024)[0].to(device) | |
with torch.no_grad(): | |
style_features = (model(style_img_512), model(style_img_1024)) | |
cached_style_features[style_name] = style_features | |
def compute_loss(generated_features, content_features, style_features, alpha, beta): | |
content_loss = 0 | |
style_loss = 0 | |
for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features): | |
batch_size, n_feature_maps, height, width = generated_feature.size() | |
content_loss += (torch.mean((generated_feature - content_feature) ** 2)) | |
G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t()) | |
A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t()) | |
E_l = ((G - A) ** 2) | |
w_l = 1/5 | |
style_loss += torch.mean(w_l * E_l) | |
return alpha * content_loss + beta * style_loss | |
def inference(content_image, style_name, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)): | |
yield None | |
print('-'*15) | |
print('DATETIME:', datetime.datetime.now()) | |
print('STYLE:', style_name) | |
img_size = 1024 if output_quality else 512 | |
content_img, original_size = preprocess_img(content_image, img_size) | |
content_img = content_img.to(device) | |
print('CONTENT IMG SIZE:', original_size) | |
print('STYLE STRENGTH:', style_strength) | |
print('HIGH QUALITY:', output_quality) | |
iters = 50 | |
lr = 0.001 + (0.099 / 99) * (style_strength - 1) | |
alpha = 1 | |
beta = 1 | |
st = time.time() | |
generated_img = content_img.clone().requires_grad_(True) | |
optimizer = optim.Adam([generated_img], lr=lr) | |
with torch.no_grad(): | |
content_features = model(content_img) | |
if img_size == 512: style_features = cached_style_features[style_name][0] | |
else: style_features = cached_style_features[style_name][1] | |
for _ in tqdm(range(iters), desc='The magic is happening ✨'): | |
optimizer.zero_grad() | |
generated_features = model(generated_img) | |
total_loss = compute_loss(generated_features, content_features, style_features, alpha, beta) | |
total_loss.backward() | |
optimizer.step() | |
et = time.time() | |
print('TIME TAKEN:', et-st) | |
yield postprocess_img(generated_img, original_size) | |
def set_slider(value): | |
return gr.update(value=value) | |
def update_settings(style): | |
return optimal_settings.get(style, (50, True)) | |
css = """ | |
#container { | |
margin: 0 auto; | |
max-width: 550px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>") | |
with gr.Column(elem_id='container'): | |
content_and_output = gr.Image(label='Content', show_label=False, type='pil', sources=['upload', 'webcam'], format='jpg', show_download_button=False) | |
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', info='Note: Adjustments automatically optimize for different styles.', value='Starry Night', type='value') | |
with gr.Accordion('Adjustments', open=False): | |
with gr.Group(): | |
style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=100, step=1, value=50) | |
with gr.Row(): | |
low_button = gr.Button('Low', size='sm').click(fn=lambda: set_slider(10), outputs=[style_strength_slider]) | |
medium_button = gr.Button('Medium', size='sm').click(fn=lambda: set_slider(50), outputs=[style_strength_slider]) | |
high_button = gr.Button('High', size='sm').click(fn=lambda: set_slider(100), outputs=[style_strength_slider]) | |
with gr.Group(): | |
output_quality = gr.Checkbox(label='More Realistic', info='Note: If unchecked, the resulting image will have a more artistic flair.', value=True) | |
submit_button = gr.Button('Submit', variant='primary') | |
download_button = gr.DownloadButton(label='Download Image', visible=False) | |
def save_image(img): | |
filename = 'generated.jpg' | |
img.save(filename) | |
return filename | |
submit_button.click( | |
fn=inference, | |
inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality], | |
outputs=[content_and_output] | |
).then( | |
fn=save_image, | |
inputs=[content_and_output], | |
outputs=[download_button] | |
).then( | |
fn=lambda: gr.update(visible=True), | |
outputs=[download_button] | |
) | |
content_and_output.change( | |
fn=lambda _: gr.update(visible=False), | |
inputs=[content_and_output], | |
outputs=[download_button] | |
) | |
style_dropdown.change( | |
fn=lambda style: set_slider(update_settings(style)[0]), | |
inputs=[style_dropdown], | |
outputs=[style_strength_slider] | |
) | |
style_dropdown.change( | |
fn=lambda style: gr.update(value=update_settings(style)[1]), | |
inputs=[style_dropdown], | |
outputs=[output_quality] | |
) | |
examples = gr.Examples( | |
examples=[ | |
['./content_images/Bridge.jpg', 'Starry Night', *optimal_settings['Starry Night']], | |
['./content_images/GoldenRetriever.jpg', 'Lego Bricks', *optimal_settings['Lego Bricks']], | |
['./content_images/SeaTurtle.jpg', 'Oil Painting', *optimal_settings['Oil Painting']], | |
['./content_images/NYCSkyline.jpg', 'Scream', *optimal_settings['Scream']] | |
], | |
inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality] | |
) | |
demo.queue = False | |
demo.config['queue'] = False | |
demo.launch(show_api=False) |