Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from tqdm import tqdm | |
import torch | |
import torch.optim as optim | |
import torch.nn.functional as F | |
from torchvision.transforms.functional import gaussian_blur | |
def _gram_matrix(feature): | |
batch_size, n_feature_maps, height, width = feature.size() | |
new_feature = feature.view(batch_size * n_feature_maps, height * width) | |
return torch.mm(new_feature, new_feature.t()) | |
def _compute_loss(generated_features, content_features, style_features, resized_bg_masks, alpha, beta): | |
content_loss = 0 | |
style_loss = 0 | |
w_l = 1 / len(generated_features) | |
for i, (gf, cf, sf) in enumerate(zip(generated_features, content_features, style_features)): | |
content_loss += F.mse_loss(gf, cf) | |
if resized_bg_masks: | |
blurred_bg_mask = gaussian_blur(resized_bg_masks[i], kernel_size=5) | |
masked_gf = gf * blurred_bg_mask | |
masked_sf = sf * blurred_bg_mask | |
G = _gram_matrix(masked_gf) | |
A = _gram_matrix(masked_sf) | |
else: | |
G = _gram_matrix(gf) | |
A = _gram_matrix(sf) | |
style_loss += w_l * F.mse_loss(G, A) | |
total_loss = alpha * content_loss + beta * style_loss | |
return content_loss, style_loss, total_loss | |
def inference( | |
*, | |
model, | |
sod_model, | |
content_image, | |
style_features, | |
apply_to_background, | |
lr, | |
iterations=101, | |
optim_caller=optim.AdamW, | |
alpha=1, | |
beta=1, | |
): | |
generated_image = content_image.clone().requires_grad_(True) | |
optimizer = optim_caller([generated_image], lr=lr) | |
min_losses = [float('inf')] * iterations | |
with torch.no_grad(): | |
content_features = model(content_image) | |
resized_bg_masks = [] | |
salient_object_ratio = None | |
if apply_to_background: | |
# original | |
segmentation_output = sod_model(content_image)['out'] # [1, 21, 512, 512] | |
segmentation_mask = segmentation_output.argmax(dim=1) # [1, 512, 512] | |
background_mask = (segmentation_mask == 0).float() | |
foreground_mask = 1 - background_mask | |
# new | |
# segmentation_output = sod_model(content_image)[0] | |
# segmentation_output = torch.sigmoid(segmentation_output) | |
# segmentation_mask = (segmentation_output > 0.7).float() | |
# background_mask = (segmentation_mask == 0).float() | |
# foreground_mask = 1 - background_mask | |
salient_object_pixel_count = foreground_mask.sum().item() | |
total_pixel_count = segmentation_mask.numel() | |
salient_object_ratio = salient_object_pixel_count / total_pixel_count | |
for cf in content_features: | |
_, _, h_i, w_i = cf.shape | |
bg_mask = F.interpolate(background_mask.unsqueeze(1), size=(h_i, w_i), mode='bilinear', align_corners=False) | |
resized_bg_masks.append(bg_mask) | |
def closure(iter): | |
optimizer.zero_grad() | |
generated_features = model(generated_image) | |
content_loss, style_loss, total_loss = _compute_loss( | |
generated_features, content_features, style_features, resized_bg_masks, alpha, beta | |
) | |
total_loss.backward() | |
# log loss | |
min_losses[iter] = min(min_losses[iter], total_loss.item()) | |
return total_loss | |
for iter in tqdm(range(iterations)): | |
optimizer.step(lambda: closure(iter)) | |
if apply_to_background: | |
with torch.no_grad(): | |
foreground_mask_resized = F.interpolate(foreground_mask.unsqueeze(1), size=generated_image.shape[2:], mode='nearest') | |
generated_image.data = generated_image.data * (1 - foreground_mask_resized) + content_image.data * foreground_mask_resized | |
return generated_image, salient_object_ratio |