sec_demo / app.py
jamesliu23's picture
Update app.py
19a04e8
import os
import streamlit as st
from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, ServiceContext
from llama_index.llm_predictor.chatgpt import ChatGPTLLMPredictor
index_name = "./index.json"
documents_folder = "/data/python.langchain.com/en/latest"
@st.cache_resource
def initialize_index(index_name, documents_folder):
llm_predictor = ChatGPTLLMPredictor()
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor)
if os.path.exists(index_name):
index = GPTSimpleVectorIndex.load_from_disk(index_name, service_context=service_context)
else:
documents = SimpleDirectoryReader(documents_folder).load_data()
index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context)
index.save_to_disk(index_name)
return index
@st.cache_data(max_entries=200, persist=True)
def query_index(_index, query_text):
response = _index.query(query_text)
return str(response)
st.title("πŸ¦™ Llama Index LangChain πŸ¦™")
st.header("Welcome to the Llama Index Streamlit LangChain")
st.write("Enter a query about LangChain python document. You can check out the latest python doc [here](https://python.langchain.com/en/latest/). Your query will be answered using the document as context, using embeddings from text-ada-002 and LLM completions from ChatGPT.")
index = None
api_key = st.text_input("Enter your OpenAI API key here:", type="password")
if api_key:
os.environ['OPENAI_API_KEY'] = api_key
index = initialize_index(index_name, documents_folder)
if index is None:
st.warning("Please enter your api key first.")
text = st.text_input("Query text:", value="How to use LLM Chain?")
if st.button("Run Query") and text is not None:
response = query_index(index, text)
st.markdown(response)
llm_col, embed_col = st.columns(2)
with llm_col:
st.markdown(f"LLM Tokens Used: {index.service_context.llm_predictor._last_token_usage}")
with embed_col:
st.markdown(f"Embedding Tokens Used: {index.service_context.embed_model._last_token_usage}")