Spaces:
Runtime error
Runtime error
| import os | |
| import streamlit as st | |
| from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, ServiceContext | |
| from llama_index.llm_predictor.chatgpt import ChatGPTLLMPredictor | |
| index_name = "./index.json" | |
| documents_folder = "/data/python.langchain.com/en/latest" | |
| def initialize_index(index_name, documents_folder): | |
| llm_predictor = ChatGPTLLMPredictor() | |
| service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor) | |
| if os.path.exists(index_name): | |
| index = GPTSimpleVectorIndex.load_from_disk(index_name, service_context=service_context) | |
| else: | |
| documents = SimpleDirectoryReader(documents_folder).load_data() | |
| index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context) | |
| index.save_to_disk(index_name) | |
| return index | |
| def query_index(_index, query_text): | |
| response = _index.query(query_text) | |
| return str(response) | |
| st.title("π¦ Llama Index LangChain π¦") | |
| st.header("Welcome to the Llama Index Streamlit LangChain") | |
| st.write("Enter a query about LangChain python document. You can check out the latest python doc [here](https://python.langchain.com/en/latest/). Your query will be answered using the document as context, using embeddings from text-ada-002 and LLM completions from ChatGPT.") | |
| index = None | |
| api_key = st.text_input("Enter your OpenAI API key here:", type="password") | |
| if api_key: | |
| os.environ['OPENAI_API_KEY'] = api_key | |
| index = initialize_index(index_name, documents_folder) | |
| if index is None: | |
| st.warning("Please enter your api key first.") | |
| text = st.text_input("Query text:", value="How to use LLM Chain?") | |
| if st.button("Run Query") and text is not None: | |
| response = query_index(index, text) | |
| st.markdown(response) | |
| llm_col, embed_col = st.columns(2) | |
| with llm_col: | |
| st.markdown(f"LLM Tokens Used: {index.service_context.llm_predictor._last_token_usage}") | |
| with embed_col: | |
| st.markdown(f"Embedding Tokens Used: {index.service_context.embed_model._last_token_usage}") |