PandA / networks /genforce /models /stylegan2_generator.py
james-oldfield's picture
Upload 194 files
2a76164
raw
history blame
No virus
46 kB
# python3.7
"""Contains the implementation of generator described in StyleGAN2.
Compared to that of StyleGAN, the generator in StyleGAN2 mainly introduces style
demodulation, adds skip connections, increases model size, and disables
progressive growth. This script ONLY supports config F in the original paper.
Paper: https://arxiv.org/pdf/1912.04958.pdf
Official TensorFlow implementation: https://github.com/NVlabs/stylegan2
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .sync_op import all_gather
__all__ = ['StyleGAN2Generator']
# Resolutions allowed.
_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024]
# Initial resolution.
_INIT_RES = 4
# Architectures allowed.
_ARCHITECTURES_ALLOWED = ['resnet', 'skip', 'origin']
# Default gain factor for weight scaling.
_WSCALE_GAIN = 1.0
class StyleGAN2Generator(nn.Module):
"""Defines the generator network in StyleGAN2.
NOTE: The synthesized images are with `RGB` channel order and pixel range
[-1, 1].
Settings for the mapping network:
(1) z_space_dim: Dimension of the input latent space, Z. (default: 512)
(2) w_space_dim: Dimension of the outout latent space, W. (default: 512)
(3) label_size: Size of the additional label for conditional generation.
(default: 0)
(4)mapping_layers: Number of layers of the mapping network. (default: 8)
(5) mapping_fmaps: Number of hidden channels of the mapping network.
(default: 512)
(6) mapping_lr_mul: Learning rate multiplier for the mapping network.
(default: 0.01)
(7) repeat_w: Repeat w-code for different layers.
Settings for the synthesis network:
(1) resolution: The resolution of the output image.
(2) image_channels: Number of channels of the output image. (default: 3)
(3) final_tanh: Whether to use `tanh` to control the final pixel range.
(default: False)
(4) const_input: Whether to use a constant in the first convolutional layer.
(default: True)
(5) architecture: Type of architecture. Support `origin`, `skip`, and
`resnet`. (default: `resnet`)
(6) fused_modulate: Whether to fuse `style_modulate` and `conv2d` together.
(default: True)
(7) demodulate: Whether to perform style demodulation. (default: True)
(8) use_wscale: Whether to use weight scaling. (default: True)
(9) noise_type: Type of noise added to the convolutional results at each
layer. (default: `spatial`)
(10) fmaps_base: Factor to control number of feature maps for each layer.
(default: 32 << 10)
(11) fmaps_max: Maximum number of feature maps in each layer. (default: 512)
"""
def __init__(self,
resolution,
z_space_dim=512,
w_space_dim=512,
label_size=0,
mapping_layers=8,
mapping_fmaps=512,
mapping_lr_mul=0.01,
repeat_w=True,
image_channels=3,
final_tanh=False,
const_input=True,
architecture='skip',
fused_modulate=True,
demodulate=True,
use_wscale=True,
noise_type='spatial',
fmaps_base=32 << 10,
fmaps_max=512):
"""Initializes with basic settings.
Raises:
ValueError: If the `resolution` is not supported, or `architecture`
is not supported.
"""
super().__init__()
if resolution not in _RESOLUTIONS_ALLOWED:
raise ValueError(f'Invalid resolution: `{resolution}`!\n'
f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.')
if architecture not in _ARCHITECTURES_ALLOWED:
raise ValueError(f'Invalid architecture: `{architecture}`!\n'
f'Architectures allowed: '
f'{_ARCHITECTURES_ALLOWED}.')
self.init_res = _INIT_RES
self.resolution = resolution
self.z_space_dim = z_space_dim
self.w_space_dim = w_space_dim
self.label_size = label_size
self.mapping_layers = mapping_layers
self.mapping_fmaps = mapping_fmaps
self.mapping_lr_mul = mapping_lr_mul
self.repeat_w = repeat_w
self.image_channels = image_channels
self.final_tanh = final_tanh
self.const_input = const_input
self.architecture = architecture
self.fused_modulate = fused_modulate
self.demodulate = demodulate
self.use_wscale = use_wscale
self.noise_type = noise_type
self.fmaps_base = fmaps_base
self.fmaps_max = fmaps_max
self.num_layers = int(np.log2(self.resolution // self.init_res * 2)) * 2
if self.repeat_w:
self.mapping_space_dim = self.w_space_dim
else:
self.mapping_space_dim = self.w_space_dim * self.num_layers
self.mapping = MappingModule(input_space_dim=self.z_space_dim,
hidden_space_dim=self.mapping_fmaps,
final_space_dim=self.mapping_space_dim,
label_size=self.label_size,
num_layers=self.mapping_layers,
use_wscale=self.use_wscale,
lr_mul=self.mapping_lr_mul)
self.truncation = TruncationModule(w_space_dim=self.w_space_dim,
num_layers=self.num_layers,
repeat_w=self.repeat_w)
self.synthesis = SynthesisModule(resolution=self.resolution,
init_resolution=self.init_res,
w_space_dim=self.w_space_dim,
image_channels=self.image_channels,
final_tanh=self.final_tanh,
const_input=self.const_input,
architecture=self.architecture,
fused_modulate=self.fused_modulate,
demodulate=self.demodulate,
use_wscale=self.use_wscale,
noise_type=self.noise_type,
fmaps_base=self.fmaps_base,
fmaps_max=self.fmaps_max)
self.pth_to_tf_var_mapping = {}
for key, val in self.mapping.pth_to_tf_var_mapping.items():
self.pth_to_tf_var_mapping[f'mapping.{key}'] = val
for key, val in self.truncation.pth_to_tf_var_mapping.items():
self.pth_to_tf_var_mapping[f'truncation.{key}'] = val
for key, val in self.synthesis.pth_to_tf_var_mapping.items():
self.pth_to_tf_var_mapping[f'synthesis.{key}'] = val
def set_space_of_latent(self, space_of_latent='w'):
"""Sets the space to which the latent code belong.
This function is particually used for choosing how to inject the latent
code into the convolutional layers. The original generator will take a
W-Space code and apply it for style modulation after an affine
transformation. But, sometimes, it may need to directly feed an already
affine-transformed code into the convolutional layer, e.g., when
training an encoder for GAN inversion. We term the transformed space as
Style Space (or Y-Space). This function is designed to tell the
convolutional layers how to use the input code.
Args:
space_of_latent: The space to which the latent code belong. Case
insensitive. (default: 'w')
"""
for module in self.modules():
if isinstance(module, ModulateConvBlock):
setattr(module, 'space_of_latent', space_of_latent)
def forward(self,
z,
label=None,
w_moving_decay=0.995,
style_mixing_prob=0.9,
trunc_psi=None,
trunc_layers=None,
randomize_noise=False,
**_unused_kwargs):
mapping_results = self.mapping(z, label)
w = mapping_results['w']
if self.training and w_moving_decay < 1:
batch_w_avg = all_gather(w).mean(dim=0)
self.truncation.w_avg.copy_(
self.truncation.w_avg * w_moving_decay +
batch_w_avg * (1 - w_moving_decay))
if self.training and style_mixing_prob > 0:
new_z = torch.randn_like(z)
new_w = self.mapping(new_z, label)['w']
if np.random.uniform() < style_mixing_prob:
mixing_cutoff = np.random.randint(1, self.num_layers)
w = self.truncation(w)
new_w = self.truncation(new_w)
w[:, :mixing_cutoff] = new_w[:, :mixing_cutoff]
wp = self.truncation(w, trunc_psi, trunc_layers)
synthesis_results = self.synthesis(wp, randomize_noise)
return {**mapping_results, **synthesis_results}
class MappingModule(nn.Module):
"""Implements the latent space mapping module.
Basically, this module executes several dense layers in sequence.
"""
def __init__(self,
input_space_dim=512,
hidden_space_dim=512,
final_space_dim=512,
label_size=0,
num_layers=8,
normalize_input=True,
use_wscale=True,
lr_mul=0.01):
super().__init__()
self.input_space_dim = input_space_dim
self.hidden_space_dim = hidden_space_dim
self.final_space_dim = final_space_dim
self.label_size = label_size
self.num_layers = num_layers
self.normalize_input = normalize_input
self.use_wscale = use_wscale
self.lr_mul = lr_mul
self.norm = PixelNormLayer() if self.normalize_input else nn.Identity()
self.pth_to_tf_var_mapping = {}
for i in range(num_layers):
dim_mul = 2 if label_size else 1
in_channels = (input_space_dim * dim_mul if i == 0 else
hidden_space_dim)
out_channels = (final_space_dim if i == (num_layers - 1) else
hidden_space_dim)
self.add_module(f'dense{i}',
DenseBlock(in_channels=in_channels,
out_channels=out_channels,
use_wscale=self.use_wscale,
lr_mul=self.lr_mul))
self.pth_to_tf_var_mapping[f'dense{i}.weight'] = f'Dense{i}/weight'
self.pth_to_tf_var_mapping[f'dense{i}.bias'] = f'Dense{i}/bias'
if label_size:
self.label_weight = nn.Parameter(
torch.randn(label_size, input_space_dim))
self.pth_to_tf_var_mapping[f'label_weight'] = f'LabelConcat/weight'
def forward(self, z, label=None):
if z.ndim != 2 or z.shape[1] != self.input_space_dim:
raise ValueError(f'Input latent code should be with shape '
f'[batch_size, input_dim], where '
f'`input_dim` equals to {self.input_space_dim}!\n'
f'But `{z.shape}` is received!')
if self.label_size:
if label is None:
raise ValueError(f'Model requires an additional label '
f'(with size {self.label_size}) as input, '
f'but no label is received!')
if label.ndim != 2 or label.shape != (z.shape[0], self.label_size):
raise ValueError(f'Input label should be with shape '
f'[batch_size, label_size], where '
f'`batch_size` equals to that of '
f'latent codes ({z.shape[0]}) and '
f'`label_size` equals to {self.label_size}!\n'
f'But `{label.shape}` is received!')
embedding = torch.matmul(label, self.label_weight)
z = torch.cat((z, embedding), dim=1)
z = self.norm(z)
w = z
for i in range(self.num_layers):
w = self.__getattr__(f'dense{i}')(w)
results = {
'z': z,
'label': label,
'w': w,
}
if self.label_size:
results['embedding'] = embedding
return results
class TruncationModule(nn.Module):
"""Implements the truncation module.
Truncation is executed as follows:
For layers in range [0, truncation_layers), the truncated w-code is computed
as
w_new = w_avg + (w - w_avg) * truncation_psi
To disable truncation, please set
(1) truncation_psi = 1.0 (None) OR
(2) truncation_layers = 0 (None)
NOTE: The returned tensor is layer-wise style codes.
"""
def __init__(self, w_space_dim, num_layers, repeat_w=True):
super().__init__()
self.num_layers = num_layers
self.w_space_dim = w_space_dim
self.repeat_w = repeat_w
if self.repeat_w:
self.register_buffer('w_avg', torch.zeros(w_space_dim))
else:
self.register_buffer('w_avg', torch.zeros(num_layers * w_space_dim))
self.pth_to_tf_var_mapping = {'w_avg': 'dlatent_avg'}
def forward(self, w, trunc_psi=None, trunc_layers=None):
if w.ndim == 2:
if self.repeat_w and w.shape[1] == self.w_space_dim:
w = w.view(-1, 1, self.w_space_dim)
wp = w.repeat(1, self.num_layers, 1)
else:
assert w.shape[1] == self.w_space_dim * self.num_layers
wp = w.view(-1, self.num_layers, self.w_space_dim)
else:
wp = w
assert wp.ndim == 3
assert wp.shape[1:] == (self.num_layers, self.w_space_dim)
trunc_psi = 1.0 if trunc_psi is None else trunc_psi
trunc_layers = 0 if trunc_layers is None else trunc_layers
if trunc_psi < 1.0 and trunc_layers > 0:
layer_idx = np.arange(self.num_layers).reshape(1, -1, 1)
coefs = np.ones_like(layer_idx, dtype=np.float32)
coefs[layer_idx < trunc_layers] *= trunc_psi
coefs = torch.from_numpy(coefs).to(wp)
w_avg = self.w_avg.view(1, -1, self.w_space_dim)
wp = w_avg + (wp - w_avg) * coefs
return wp
class SynthesisModule(nn.Module):
"""Implements the image synthesis module.
Basically, this module executes several convolutional layers in sequence.
"""
def __init__(self,
resolution=1024,
init_resolution=4,
w_space_dim=512,
image_channels=3,
final_tanh=False,
const_input=True,
architecture='skip',
fused_modulate=True,
demodulate=True,
use_wscale=True,
noise_type='spatial',
fmaps_base=32 << 10,
fmaps_max=512):
super().__init__()
self.init_res = init_resolution
self.init_res_log2 = int(np.log2(self.init_res))
self.resolution = resolution
self.final_res_log2 = int(np.log2(self.resolution))
self.w_space_dim = w_space_dim
self.image_channels = image_channels
self.final_tanh = final_tanh
self.const_input = const_input
self.architecture = architecture
self.fused_modulate = fused_modulate
self.demodulate = demodulate
self.use_wscale = use_wscale
self.noise_type = noise_type
self.fmaps_base = fmaps_base
self.fmaps_max = fmaps_max
self.num_layers = (self.final_res_log2 - self.init_res_log2 + 1) * 2
self.pth_to_tf_var_mapping = {}
for res_log2 in range(self.init_res_log2, self.final_res_log2 + 1):
res = 2 ** res_log2
block_idx = res_log2 - self.init_res_log2
# First convolution layer for each resolution.
if res == self.init_res:
if self.const_input:
self.add_module(f'early_layer',
InputBlock(init_resolution=self.init_res,
channels=self.get_nf(res)))
self.pth_to_tf_var_mapping[f'early_layer.const'] = (
f'{res}x{res}/Const/const')
else:
self.add_module(f'early_layer',
DenseBlock(in_channels=self.w_space_dim,
out_channels=self.get_nf(res),
use_wscale=self.use_wscale))
self.pth_to_tf_var_mapping[f'early_layer.weight'] = (
f'{res}x{res}/Dense/weight')
self.pth_to_tf_var_mapping[f'early_layer.bias'] = (
f'{res}x{res}/Dense/bias')
else:
layer_name = f'layer{2 * block_idx - 1}'
self.add_module(
layer_name,
ModulateConvBlock(in_channels=self.get_nf(res // 2),
out_channels=self.get_nf(res),
resolution=res,
w_space_dim=self.w_space_dim,
scale_factor=2,
fused_modulate=self.fused_modulate,
demodulate=self.demodulate,
use_wscale=self.use_wscale,
noise_type=self.noise_type))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/Conv0_up/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/Conv0_up/bias')
self.pth_to_tf_var_mapping[f'{layer_name}.style.weight'] = (
f'{res}x{res}/Conv0_up/mod_weight')
self.pth_to_tf_var_mapping[f'{layer_name}.style.bias'] = (
f'{res}x{res}/Conv0_up/mod_bias')
self.pth_to_tf_var_mapping[f'{layer_name}.noise_strength'] = (
f'{res}x{res}/Conv0_up/noise_strength')
self.pth_to_tf_var_mapping[f'{layer_name}.noise'] = (
f'noise{2 * block_idx - 1}')
if self.architecture == 'resnet':
layer_name = f'layer{2 * block_idx - 1}'
self.add_module(
layer_name,
ConvBlock(in_channels=self.get_nf(res // 2),
out_channels=self.get_nf(res),
kernel_size=1,
add_bias=False,
scale_factor=2,
use_wscale=self.use_wscale,
activation_type='linear'))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/Skip/weight')
# Second convolution layer for each resolution.
layer_name = f'layer{2 * block_idx}'
self.add_module(
layer_name,
ModulateConvBlock(in_channels=self.get_nf(res),
out_channels=self.get_nf(res),
resolution=res,
w_space_dim=self.w_space_dim,
fused_modulate=self.fused_modulate,
demodulate=self.demodulate,
use_wscale=self.use_wscale,
noise_type=self.noise_type))
tf_layer_name = 'Conv' if res == self.init_res else 'Conv1'
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/{tf_layer_name}/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/{tf_layer_name}/bias')
self.pth_to_tf_var_mapping[f'{layer_name}.style.weight'] = (
f'{res}x{res}/{tf_layer_name}/mod_weight')
self.pth_to_tf_var_mapping[f'{layer_name}.style.bias'] = (
f'{res}x{res}/{tf_layer_name}/mod_bias')
self.pth_to_tf_var_mapping[f'{layer_name}.noise_strength'] = (
f'{res}x{res}/{tf_layer_name}/noise_strength')
self.pth_to_tf_var_mapping[f'{layer_name}.noise'] = (
f'noise{2 * block_idx}')
# Output convolution layer for each resolution (if needed).
if res_log2 == self.final_res_log2 or self.architecture == 'skip':
layer_name = f'output{block_idx}'
self.add_module(
layer_name,
ModulateConvBlock(in_channels=self.get_nf(res),
out_channels=image_channels,
resolution=res,
w_space_dim=self.w_space_dim,
kernel_size=1,
fused_modulate=self.fused_modulate,
demodulate=False,
use_wscale=self.use_wscale,
add_noise=False,
activation_type='linear'))
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/ToRGB/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/ToRGB/bias')
self.pth_to_tf_var_mapping[f'{layer_name}.style.weight'] = (
f'{res}x{res}/ToRGB/mod_weight')
self.pth_to_tf_var_mapping[f'{layer_name}.style.bias'] = (
f'{res}x{res}/ToRGB/mod_bias')
if self.architecture == 'skip':
self.upsample = UpsamplingLayer()
self.final_activate = nn.Tanh() if final_tanh else nn.Identity()
def get_nf(self, res):
"""Gets number of feature maps according to current resolution."""
return min(self.fmaps_base // res, self.fmaps_max)
def forward(self, wp, randomize_noise=False, x=None, image=None, start=2, stop=None):
stop = self.num_layers - 1 if stop is None else stop
# if wp.ndim != 3 or wp.shape[1:] != (self.num_layers, self.w_space_dim):
# raise ValueError(f'Input tensor should be with shape '
# f'[batch_size, num_layers, w_space_dim], where '
# f'`num_layers` equals to {self.num_layers}, and '
# f'`w_space_dim` equals to {self.w_space_dim}!\n'
# f'But `{wp.shape}` is received!')
results = {'wp': wp}
x = self.early_layer(wp[:, 0]) if x is None else x
if self.architecture == 'origin':
for layer_idx in range(self.num_layers - 1):
x, style = self.__getattr__(f'layer{layer_idx}')(
x, wp[:, layer_idx], randomize_noise)
results[f'style{layer_idx:02d}'] = style
image, style = self.__getattr__(f'output{layer_idx // 2}')(
x, wp[:, layer_idx + 1])
results[f'output_style{layer_idx // 2}'] = style
elif self.architecture == 'skip':
# for layer_idx in range(self.num_layers - 1):
for layer_idx in range(start, stop):
x, style = self.__getattr__(f'layer{layer_idx}')(
x, wp[:, layer_idx], randomize_noise)
results[f'style{layer_idx:02d}'] = style
if layer_idx % 2 == 0:
temp, style = self.__getattr__(f'output{layer_idx // 2}')(
x, wp[:, layer_idx + 1])
results[f'output_style{layer_idx // 2}'] = style
if layer_idx == 0 or image is None:
image = temp
else:
image = temp + self.upsample(image)
elif self.architecture == 'resnet':
x, style = self.layer0(x)
results[f'style00'] = style
for layer_idx in range(1, self.num_layers - 1, 2):
residual = self.__getattr__(f'skip_layer{layer_idx // 2}')(x)
x, style = self.__getattr__(f'layer{layer_idx}')(
x, wp[:, layer_idx], randomize_noise)
results[f'style{layer_idx:02d}'] = style
x, style = self.__getattr__(f'layer{layer_idx + 1}')(
x, wp[:, layer_idx + 1], randomize_noise)
results[f'style{layer_idx + 1:02d}'] = style
x = (x + residual) / np.sqrt(2.0)
image, style = self.__getattr__(f'output{layer_idx // 2 + 1}')(
x, wp[:, layer_idx + 2])
results[f'output_style{layer_idx // 2}'] = style
results['image'] = self.final_activate(image) if stop == self.num_layers -1 else image
results['x'] = x
return results
class PixelNormLayer(nn.Module):
"""Implements pixel-wise feature vector normalization layer."""
def __init__(self, dim=1, epsilon=1e-8):
super().__init__()
self.dim = dim
self.eps = epsilon
def forward(self, x):
norm = torch.sqrt(
torch.mean(x ** 2, dim=self.dim, keepdim=True) + self.eps)
return x / norm
class UpsamplingLayer(nn.Module):
"""Implements the upsampling layer.
This layer can also be used as filtering by setting `scale_factor` as 1.
"""
def __init__(self,
scale_factor=2,
kernel=(1, 3, 3, 1),
extra_padding=0,
kernel_gain=None):
super().__init__()
assert scale_factor >= 1
self.scale_factor = scale_factor
if extra_padding != 0:
assert scale_factor == 1
if kernel is None:
kernel = np.ones((scale_factor), dtype=np.float32)
else:
kernel = np.array(kernel, dtype=np.float32)
assert kernel.ndim == 1
kernel = np.outer(kernel, kernel)
kernel = kernel / np.sum(kernel)
if kernel_gain is None:
kernel = kernel * (scale_factor ** 2)
else:
assert kernel_gain > 0
kernel = kernel * (kernel_gain ** 2)
assert kernel.ndim == 2
assert kernel.shape[0] == kernel.shape[1]
kernel = kernel[np.newaxis, np.newaxis]
self.register_buffer('kernel', torch.from_numpy(kernel))
self.kernel = self.kernel.flip(0, 1)
self.upsample_padding = (0, scale_factor - 1, # Width padding.
0, 0, # Width.
0, scale_factor - 1, # Height padding.
0, 0, # Height.
0, 0, # Channel.
0, 0) # Batch size.
padding = kernel.shape[2] - scale_factor + extra_padding
self.padding = ((padding + 1) // 2 + scale_factor - 1, padding // 2,
(padding + 1) // 2 + scale_factor - 1, padding // 2)
def forward(self, x):
assert x.ndim == 4
channels = x.shape[1]
if self.scale_factor > 1:
x = x.view(-1, channels, x.shape[2], 1, x.shape[3], 1)
x = F.pad(x, self.upsample_padding, mode='constant', value=0)
x = x.view(-1, channels, x.shape[2] * self.scale_factor,
x.shape[4] * self.scale_factor)
x = x.view(-1, 1, x.shape[2], x.shape[3])
x = F.pad(x, self.padding, mode='constant', value=0)
x = F.conv2d(x, self.kernel, stride=1)
x = x.view(-1, channels, x.shape[2], x.shape[3])
return x
class InputBlock(nn.Module):
"""Implements the input block.
Basically, this block starts from a const input, which is with shape
`(channels, init_resolution, init_resolution)`.
"""
def __init__(self, init_resolution, channels):
super().__init__()
self.const = nn.Parameter(
torch.randn(1, channels, init_resolution, init_resolution))
def forward(self, w):
x = self.const.repeat(w.shape[0], 1, 1, 1)
return x
class ConvBlock(nn.Module):
"""Implements the convolutional block (no style modulation).
Basically, this block executes, convolutional layer, filtering layer (if
needed), and activation layer in sequence.
NOTE: This block is particularly used for skip-connection branch in the
`resnet` structure.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
add_bias=True,
scale_factor=1,
filtering_kernel=(1, 3, 3, 1),
use_wscale=True,
wscale_gain=_WSCALE_GAIN,
lr_mul=1.0,
activation_type='lrelu'):
"""Initializes with block settings.
Args:
in_channels: Number of channels of the input tensor.
out_channels: Number of channels of the output tensor.
kernel_size: Size of the convolutional kernels. (default: 3)
add_bias: Whether to add bias onto the convolutional result.
(default: True)
scale_factor: Scale factor for upsampling. `1` means skip
upsampling. (default: 1)
filtering_kernel: Kernel used for filtering after upsampling.
(default: (1, 3, 3, 1))
use_wscale: Whether to use weight scaling. (default: True)
wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN)
lr_mul: Learning multiplier for both weight and bias. (default: 1.0)
activation_type: Type of activation. Support `linear` and `lrelu`.
(default: `lrelu`)
Raises:
NotImplementedError: If the `activation_type` is not supported.
"""
super().__init__()
if scale_factor > 1:
self.use_conv2d_transpose = True
extra_padding = scale_factor - kernel_size
self.filter = UpsamplingLayer(scale_factor=1,
kernel=filtering_kernel,
extra_padding=extra_padding,
kernel_gain=scale_factor)
self.stride = scale_factor
self.padding = 0 # Padding is done in `UpsamplingLayer`.
else:
self.use_conv2d_transpose = False
assert kernel_size % 2 == 1
self.stride = 1
self.padding = kernel_size // 2
weight_shape = (out_channels, in_channels, kernel_size, kernel_size)
fan_in = kernel_size * kernel_size * in_channels
wscale = wscale_gain / np.sqrt(fan_in)
if use_wscale:
self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul)
self.wscale = wscale * lr_mul
else:
self.weight = nn.Parameter(
torch.randn(*weight_shape) * wscale / lr_mul)
self.wscale = lr_mul
if add_bias:
self.bias = nn.Parameter(torch.zeros(out_channels))
else:
self.bias = None
self.bscale = lr_mul
if activation_type == 'linear':
self.activate = nn.Identity()
self.activate_scale = 1.0
elif activation_type == 'lrelu':
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
self.activate_scale = np.sqrt(2.0)
else:
raise NotImplementedError(f'Not implemented activation function: '
f'`{activation_type}`!')
def forward(self, x):
weight = self.weight * self.wscale
bias = self.bias * self.bscale if self.bias is not None else None
if self.use_conv2d_transpose:
weight = weight.permute(1, 0, 2, 3).flip(2, 3)
x = F.conv_transpose2d(x,
weight=weight,
bias=bias,
stride=self.scale_factor,
padding=self.padding)
x = self.filter(x)
else:
x = F.conv2d(x,
weight=weight,
bias=bias,
stride=self.stride,
padding=self.padding)
x = self.activate(x) * self.activate_scale
return x
class ModulateConvBlock(nn.Module):
"""Implements the convolutional block with style modulation."""
def __init__(self,
in_channels,
out_channels,
resolution,
w_space_dim,
kernel_size=3,
add_bias=True,
scale_factor=1,
filtering_kernel=(1, 3, 3, 1),
fused_modulate=True,
demodulate=True,
use_wscale=True,
wscale_gain=_WSCALE_GAIN,
lr_mul=1.0,
add_noise=True,
noise_type='spatial',
activation_type='lrelu',
epsilon=1e-8):
"""Initializes with block settings.
Args:
in_channels: Number of channels of the input tensor.
out_channels: Number of channels of the output tensor.
resolution: Resolution of the output tensor.
w_space_dim: Dimension of W space for style modulation.
kernel_size: Size of the convolutional kernels. (default: 3)
add_bias: Whether to add bias onto the convolutional result.
(default: True)
scale_factor: Scale factor for upsampling. `1` means skip
upsampling. (default: 1)
filtering_kernel: Kernel used for filtering after upsampling.
(default: (1, 3, 3, 1))
fused_modulate: Whether to fuse `style_modulate` and `conv2d`
together. (default: True)
demodulate: Whether to perform style demodulation. (default: True)
use_wscale: Whether to use weight scaling. (default: True)
wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN)
lr_mul: Learning multiplier for both weight and bias. (default: 1.0)
add_noise: Whether to add noise onto the output tensor. (default:
True)
noise_type: Type of noise added to the feature map after the
convolution (if needed). Support `spatial` and `channel`.
(default: `spatial`)
activation_type: Type of activation. Support `linear` and `lrelu`.
(default: `lrelu`)
epsilon: Small number to avoid `divide by zero`. (default: 1e-8)
Raises:
NotImplementedError: If the `activation_type` is not supported.
"""
super().__init__()
self.in_c = in_channels
self.out_c = out_channels
self.res = resolution
self.w_space_dim = w_space_dim
self.ksize = kernel_size
self.eps = epsilon
self.space_of_latent = 'w'
if scale_factor > 1:
self.use_conv2d_transpose = True
extra_padding = scale_factor - kernel_size
self.filter = UpsamplingLayer(scale_factor=1,
kernel=filtering_kernel,
extra_padding=extra_padding,
kernel_gain=scale_factor)
self.stride = scale_factor
self.padding = 0 # Padding is done in `UpsamplingLayer`.
else:
self.use_conv2d_transpose = False
assert kernel_size % 2 == 1
self.stride = 1
self.padding = kernel_size // 2
weight_shape = (out_channels, in_channels, kernel_size, kernel_size)
fan_in = kernel_size * kernel_size * in_channels
wscale = wscale_gain / np.sqrt(fan_in)
if use_wscale:
self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul)
self.wscale = wscale * lr_mul
else:
self.weight = nn.Parameter(
torch.randn(*weight_shape) * wscale / lr_mul)
self.wscale = lr_mul
self.style = DenseBlock(in_channels=w_space_dim,
out_channels=in_channels,
additional_bias=1.0,
use_wscale=use_wscale,
activation_type='linear')
self.fused_modulate = fused_modulate
self.demodulate = demodulate
if add_bias:
self.bias = nn.Parameter(torch.zeros(out_channels))
else:
self.bias = None
self.bscale = lr_mul
if activation_type == 'linear':
self.activate = nn.Identity()
self.activate_scale = 1.0
elif activation_type == 'lrelu':
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
self.activate_scale = np.sqrt(2.0)
else:
raise NotImplementedError(f'Not implemented activation function: '
f'`{activation_type}`!')
self.add_noise = add_noise
if self.add_noise:
self.noise_type = noise_type.lower()
if self.noise_type == 'spatial':
self.register_buffer('noise',
torch.randn(1, 1, self.res, self.res))
elif self.noise_type == 'channel':
self.register_buffer('noise',
torch.randn(1, self.channels, 1, 1))
else:
raise NotImplementedError(f'Not implemented noise type: '
f'`{self.noise_type}`!')
self.noise_strength = nn.Parameter(torch.zeros(()))
def forward_style(self, w):
"""Gets style code from the given input.
More specifically, if the input is from W-Space, it will be projected by
an affine transformation. If it is from the Style Space (Y-Space), no
operation is required.
NOTE: For codes from Y-Space, we use slicing to make sure the dimension
is correct, in case that the code is padded before fed into this layer.
"""
if self.space_of_latent == 'w':
if w.ndim != 2 or w.shape[1] != self.w_space_dim:
raise ValueError(f'The input tensor should be with shape '
f'[batch_size, w_space_dim], where '
f'`w_space_dim` equals to '
f'{self.w_space_dim}!\n'
f'But `{w.shape}` is received!')
style = self.style(w)
elif self.space_of_latent == 'y':
if w.ndim != 2 or w.shape[1] < self.in_c:
raise ValueError(f'The input tensor should be with shape '
f'[batch_size, y_space_dim], where '
f'`y_space_dim` equals to {self.in_c}!\n'
f'But `{w.shape}` is received!')
style = w[:, :self.in_c]
return style
def forward(self, x, w, randomize_noise=False):
batch = x.shape[0]
weight = self.weight * self.wscale
weight = weight.permute(2, 3, 1, 0)
# Style modulation.
style = self.forward_style(w)
_weight = weight.view(1, self.ksize, self.ksize, self.in_c, self.out_c)
_weight = _weight * style.view(batch, 1, 1, self.in_c, 1)
# Style demodulation.
if self.demodulate:
_weight_norm = torch.sqrt(
torch.sum(_weight ** 2, dim=[1, 2, 3]) + self.eps)
_weight = _weight / _weight_norm.view(batch, 1, 1, 1, self.out_c)
if self.fused_modulate:
x = x.view(1, batch * self.in_c, x.shape[2], x.shape[3])
weight = _weight.permute(1, 2, 3, 0, 4).reshape(
self.ksize, self.ksize, self.in_c, batch * self.out_c)
else:
x = x * style.view(batch, self.in_c, 1, 1)
if self.use_conv2d_transpose:
weight = weight.flip(0, 1)
if self.fused_modulate:
weight = weight.view(
self.ksize, self.ksize, self.in_c, batch, self.out_c)
weight = weight.permute(0, 1, 4, 3, 2)
weight = weight.reshape(
self.ksize, self.ksize, self.out_c, batch * self.in_c)
weight = weight.permute(3, 2, 0, 1)
else:
weight = weight.permute(2, 3, 0, 1)
x = F.conv_transpose2d(x,
weight=weight,
bias=None,
stride=self.stride,
padding=self.padding,
groups=(batch if self.fused_modulate else 1))
x = self.filter(x)
else:
weight = weight.permute(3, 2, 0, 1)
x = F.conv2d(x,
weight=weight,
bias=None,
stride=self.stride,
padding=self.padding,
groups=(batch if self.fused_modulate else 1))
if self.fused_modulate:
x = x.view(batch, self.out_c, self.res, self.res)
elif self.demodulate:
x = x / _weight_norm.view(batch, self.out_c, 1, 1)
if self.add_noise:
if randomize_noise:
if self.noise_type == 'spatial':
noise = torch.randn(x.shape[0], 1, self.res, self.res).to(x)
elif self.noise_type == 'channel':
noise = torch.randn(x.shape[0], self.channels, 1, 1).to(x)
else:
noise = self.noise
x = x + noise * self.noise_strength.view(1, 1, 1, 1)
bias = self.bias * self.bscale if self.bias is not None else None
if bias is not None:
x = x + bias.view(1, -1, 1, 1)
x = self.activate(x) * self.activate_scale
return x, style
class DenseBlock(nn.Module):
"""Implements the dense block.
Basically, this block executes fully-connected layer and activation layer.
NOTE: This layer supports adding an additional bias beyond the trainable
bias parameter. This is specially used for the mapping from the w code to
the style code.
"""
def __init__(self,
in_channels,
out_channels,
add_bias=True,
additional_bias=0,
use_wscale=True,
wscale_gain=_WSCALE_GAIN,
lr_mul=1.0,
activation_type='lrelu'):
"""Initializes with block settings.
Args:
in_channels: Number of channels of the input tensor.
out_channels: Number of channels of the output tensor.
add_bias: Whether to add bias onto the fully-connected result.
(default: True)
additional_bias: The additional bias, which is independent from the
bias parameter. (default: 0.0)
use_wscale: Whether to use weight scaling. (default: True)
wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN)
lr_mul: Learning multiplier for both weight and bias. (default: 1.0)
activation_type: Type of activation. Support `linear` and `lrelu`.
(default: `lrelu`)
Raises:
NotImplementedError: If the `activation_type` is not supported.
"""
super().__init__()
weight_shape = (out_channels, in_channels)
wscale = wscale_gain / np.sqrt(in_channels)
if use_wscale:
self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul)
self.wscale = wscale * lr_mul
else:
self.weight = nn.Parameter(
torch.randn(*weight_shape) * wscale / lr_mul)
self.wscale = lr_mul
if add_bias:
self.bias = nn.Parameter(torch.zeros(out_channels))
else:
self.bias = None
self.bscale = lr_mul
self.additional_bias = additional_bias
if activation_type == 'linear':
self.activate = nn.Identity()
self.activate_scale = 1.0
elif activation_type == 'lrelu':
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
self.activate_scale = np.sqrt(2.0)
else:
raise NotImplementedError(f'Not implemented activation function: '
f'`{activation_type}`!')
def forward(self, x):
if x.ndim != 2:
x = x.view(x.shape[0], -1)
bias = self.bias * self.bscale if self.bias is not None else None
x = F.linear(x, weight=self.weight * self.wscale, bias=bias)
x = self.activate(x + self.additional_bias) * self.activate_scale
return x