PandA / networks /genforce /models /pggan_generator.py
james-oldfield's picture
Upload 194 files
2a76164
raw
history blame
12.8 kB
# python3.7
"""Contains the implementation of generator described in PGGAN.
Paper: https://arxiv.org/pdf/1710.10196.pdf
Official TensorFlow implementation:
https://github.com/tkarras/progressive_growing_of_gans
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
__all__ = ['PGGANGenerator']
# Resolutions allowed.
_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024]
# Initial resolution.
_INIT_RES = 4
# Default gain factor for weight scaling.
_WSCALE_GAIN = np.sqrt(2.0)
class PGGANGenerator(nn.Module):
"""Defines the generator network in PGGAN.
NOTE: The synthesized images are with `RGB` channel order and pixel range
[-1, 1].
Settings for the network:
(1) resolution: The resolution of the output image.
(2) z_space_dim: The dimension of the latent space, Z. (default: 512)
(3) image_channels: Number of channels of the output image. (default: 3)
(4) final_tanh: Whether to use `tanh` to control the final pixel range.
(default: False)
(5) label_size: Size of the additional label for conditional generation.
(default: 0)
(6) fused_scale: Whether to fused `upsample` and `conv2d` together,
resulting in `conv2d_transpose`. (default: False)
(7) use_wscale: Whether to use weight scaling. (default: True)
(8) fmaps_base: Factor to control number of feature maps for each layer.
(default: 16 << 10)
(9) fmaps_max: Maximum number of feature maps in each layer. (default: 512)
"""
def __init__(self,
resolution,
z_space_dim=512,
image_channels=3,
final_tanh=False,
label_size=0,
fused_scale=False,
use_wscale=True,
fmaps_base=16 << 10,
fmaps_max=512):
"""Initializes with basic settings.
Raises:
ValueError: If the `resolution` is not supported.
"""
super().__init__()
if resolution not in _RESOLUTIONS_ALLOWED:
raise ValueError(f'Invalid resolution: `{resolution}`!\n'
f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.')
self.init_res = _INIT_RES
self.init_res_log2 = int(np.log2(self.init_res))
self.resolution = resolution
self.final_res_log2 = int(np.log2(self.resolution))
self.z_space_dim = z_space_dim
self.image_channels = image_channels
self.final_tanh = final_tanh
self.label_size = label_size
self.fused_scale = fused_scale
self.use_wscale = use_wscale
self.fmaps_base = fmaps_base
self.fmaps_max = fmaps_max
# Number of convolutional layers.
self.num_layers = (self.final_res_log2 - self.init_res_log2 + 1) * 2
# Level of detail (used for progressive training).
self.register_buffer('lod', torch.zeros(()))
self.pth_to_tf_var_mapping = {'lod': 'lod'}
for res_log2 in range(self.init_res_log2, self.final_res_log2 + 1):
res = 2 ** res_log2
block_idx = res_log2 - self.init_res_log2
# First convolution layer for each resolution.
if res == self.init_res:
self.add_module(
f'layer{2 * block_idx}',
ConvBlock(in_channels=self.z_space_dim + self.label_size,
out_channels=self.get_nf(res),
kernel_size=self.init_res,
padding=self.init_res - 1,
use_wscale=self.use_wscale))
tf_layer_name = 'Dense'
else:
self.add_module(
f'layer{2 * block_idx}',
ConvBlock(in_channels=self.get_nf(res // 2),
out_channels=self.get_nf(res),
upsample=True,
fused_scale=self.fused_scale,
use_wscale=self.use_wscale))
tf_layer_name = 'Conv0_up' if self.fused_scale else 'Conv0'
self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.weight'] = (
f'{res}x{res}/{tf_layer_name}/weight')
self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.bias'] = (
f'{res}x{res}/{tf_layer_name}/bias')
# Second convolution layer for each resolution.
self.add_module(
f'layer{2 * block_idx + 1}',
ConvBlock(in_channels=self.get_nf(res),
out_channels=self.get_nf(res),
use_wscale=self.use_wscale))
tf_layer_name = 'Conv' if res == self.init_res else 'Conv1'
self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.weight'] = (
f'{res}x{res}/{tf_layer_name}/weight')
self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.bias'] = (
f'{res}x{res}/{tf_layer_name}/bias')
# Output convolution layer for each resolution.
self.add_module(
f'output{block_idx}',
ConvBlock(in_channels=self.get_nf(res),
out_channels=self.image_channels,
kernel_size=1,
padding=0,
use_wscale=self.use_wscale,
wscale_gain=1.0,
activation_type='linear'))
self.pth_to_tf_var_mapping[f'output{block_idx}.weight'] = (
f'ToRGB_lod{self.final_res_log2 - res_log2}/weight')
self.pth_to_tf_var_mapping[f'output{block_idx}.bias'] = (
f'ToRGB_lod{self.final_res_log2 - res_log2}/bias')
self.upsample = UpsamplingLayer()
self.final_activate = nn.Tanh() if self.final_tanh else nn.Identity()
def get_nf(self, res):
"""Gets number of feature maps according to current resolution."""
return min(self.fmaps_base // res, self.fmaps_max)
def forward(self, z, label=None, lod=None, start=2, stop=None, init_norm=True, **_unused_kwargs):
stop = self.final_res_log2 + 1 if stop is None else stop
lod = self.lod.cpu().tolist() if lod is None else lod
if lod + self.init_res_log2 > self.final_res_log2:
raise ValueError(f'Maximum level-of-detail (lod) is '
f'{self.final_res_log2 - self.init_res_log2}, '
f'but `{lod}` is received!')
# process latent code if we start at first layer of GAN
if start == 2:
z = self.layer0.pixel_norm(z) if init_norm else z
x = z.view(z.shape[0], self.z_space_dim + self.label_size, 1, 1)
else:
x = z
for res_log2 in range(start, stop):
current_lod = self.final_res_log2 - res_log2
if lod < current_lod + 1:
block_idx = res_log2 - self.init_res_log2
x = self.__getattr__(f'layer{2 * block_idx}')(x)
x = self.__getattr__(f'layer{2 * block_idx + 1}')(x)
if current_lod - 1 < lod <= current_lod:
image = self.__getattr__(f'output{block_idx}')(x)
elif current_lod < lod < current_lod + 1:
alpha = np.ceil(lod) - lod
image = (self.__getattr__(f'output{block_idx}')(x) * alpha +
self.upsample(image) * (1 - alpha))
elif lod >= current_lod + 1:
image = self.upsample(image)
if res_log2 == self.final_res_log2:
image = self.final_activate(image)
else:
image = None
results = {
'z': z,
'x': x,
'label': label,
'image': image,
}
return results
class PixelNormLayer(nn.Module):
"""Implements pixel-wise feature vector normalization layer."""
def __init__(self, epsilon=1e-8):
super().__init__()
self.eps = epsilon
def forward(self, x):
norm = torch.sqrt(torch.mean(x ** 2, dim=1, keepdim=True) + self.eps)
return x / norm
class UpsamplingLayer(nn.Module):
"""Implements the upsampling layer.
Basically, this layer can be used to upsample feature maps with nearest
neighbor interpolation.
"""
def __init__(self, scale_factor=2):
super().__init__()
self.scale_factor = scale_factor
def forward(self, x):
if self.scale_factor <= 1:
return x
return F.interpolate(x, scale_factor=self.scale_factor, mode='nearest')
class ConvBlock(nn.Module):
"""Implements the convolutional block.
Basically, this block executes pixel-wise normalization layer, upsampling
layer (if needed), convolutional layer, and activation layer in sequence.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
add_bias=True,
upsample=False,
fused_scale=False,
use_wscale=True,
wscale_gain=_WSCALE_GAIN,
activation_type='lrelu'):
"""Initializes with block settings.
Args:
in_channels: Number of channels of the input tensor.
out_channels: Number of channels of the output tensor.
kernel_size: Size of the convolutional kernels. (default: 3)
stride: Stride parameter for convolution operation. (default: 1)
padding: Padding parameter for convolution operation. (default: 1)
add_bias: Whether to add bias onto the convolutional result.
(default: True)
upsample: Whether to upsample the input tensor before convolution.
(default: False)
fused_scale: Whether to fused `upsample` and `conv2d` together,
resulting in `conv2d_transpose`. (default: False)
use_wscale: Whether to use weight scaling. (default: True)
wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN)
activation_type: Type of activation. Support `linear` and `lrelu`.
(default: `lrelu`)
Raises:
NotImplementedError: If the `activation_type` is not supported.
"""
super().__init__()
self.pixel_norm = PixelNormLayer()
if upsample and not fused_scale:
self.upsample = UpsamplingLayer()
else:
self.upsample = nn.Identity()
if upsample and fused_scale:
self.use_conv2d_transpose = True
weight_shape = (in_channels, out_channels, kernel_size, kernel_size)
self.stride = 2
self.padding = 1
else:
self.use_conv2d_transpose = False
weight_shape = (out_channels, in_channels, kernel_size, kernel_size)
self.stride = stride
self.padding = padding
fan_in = kernel_size * kernel_size * in_channels
wscale = wscale_gain / np.sqrt(fan_in)
if use_wscale:
self.weight = nn.Parameter(torch.randn(*weight_shape))
self.wscale = wscale
else:
self.weight = nn.Parameter(torch.randn(*weight_shape) * wscale)
self.wscale = 1.0
if add_bias:
self.bias = nn.Parameter(torch.zeros(out_channels))
else:
self.bias = None
if activation_type == 'linear':
self.activate = nn.Identity()
elif activation_type == 'lrelu':
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
else:
raise NotImplementedError(f'Not implemented activation function: '
f'`{activation_type}`!')
def forward(self, x):
x = self.pixel_norm(x)
x = self.upsample(x)
weight = self.weight * self.wscale
if self.use_conv2d_transpose:
weight = F.pad(weight, (1, 1, 1, 1, 0, 0, 0, 0), 'constant', 0.0)
weight = (weight[:, :, 1:, 1:] + weight[:, :, :-1, 1:] +
weight[:, :, 1:, :-1] + weight[:, :, :-1, :-1])
x = F.conv_transpose2d(x,
weight=weight,
bias=self.bias,
stride=self.stride,
padding=self.padding)
else:
x = F.conv2d(x,
weight=weight,
bias=self.bias,
stride=self.stride,
padding=self.padding)
x = self.activate(x)
return x