jaleesahmed commited on
Commit
1bce424
·
1 Parent(s): 79ea815
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -4,9 +4,13 @@ from sklearn.preprocessing import LabelEncoder
4
 
5
  def data_description(desc_type):
6
  df = pd.read_csv('emp_experience_data.csv')
7
- data_encoded = df.copy(deep=True)
8
  pd.options.display.max_columns = 25
9
  pd.options.display.max_rows = 10
 
 
 
 
 
10
  if desc_type == "Display Data":
11
  return df.head()
12
  if desc_type == "Describe Data":
@@ -15,9 +19,6 @@ def data_description(desc_type):
15
  data_desc.insert(0, "Description", ["count", "mean", "std", "min", "25%", "50%", "75%", "max"], True)
16
  return data_desc
17
  if desc_type == "Display Encoding":
18
- categorical_column = ['Attrition', 'Gender', 'BusinessTravel', 'Education', 'EmployeeExperience', 'EmployeeFeedbackSentiments', 'Designation', 'SalarySatisfaction',
19
- 'HealthBenefitsSatisfaction', 'UHGDiscountProgramUsage', 'HealthConscious', 'CareerPathSatisfaction', 'Region']
20
- label_encoding = LabelEncoder()
21
  data = [["Feature", "Mapping"]]
22
  for col in categorical_column:
23
  data_encoded[col] = label_encoding.fit_transform(data_encoded[col])
@@ -25,6 +26,8 @@ def data_description(desc_type):
25
  data.append([col, str(le_name_mapping)])
26
  return data
27
  if desc_type == "Display Encoded Data":
 
 
28
  return data_encoded.head()
29
 
30
  inputs = [
 
4
 
5
  def data_description(desc_type):
6
  df = pd.read_csv('emp_experience_data.csv')
 
7
  pd.options.display.max_columns = 25
8
  pd.options.display.max_rows = 10
9
+ data_encoded = df.copy(deep=True)
10
+ categorical_column = ['Attrition', 'Gender', 'BusinessTravel', 'Education', 'EmployeeExperience', 'EmployeeFeedbackSentiments', 'Designation',
11
+ 'SalarySatisfaction', 'HealthBenefitsSatisfaction', 'UHGDiscountProgramUsage', 'HealthConscious', 'CareerPathSatisfaction', 'Region']
12
+ label_encoding = LabelEncoder()
13
+
14
  if desc_type == "Display Data":
15
  return df.head()
16
  if desc_type == "Describe Data":
 
19
  data_desc.insert(0, "Description", ["count", "mean", "std", "min", "25%", "50%", "75%", "max"], True)
20
  return data_desc
21
  if desc_type == "Display Encoding":
 
 
 
22
  data = [["Feature", "Mapping"]]
23
  for col in categorical_column:
24
  data_encoded[col] = label_encoding.fit_transform(data_encoded[col])
 
26
  data.append([col, str(le_name_mapping)])
27
  return data
28
  if desc_type == "Display Encoded Data":
29
+ for col in categorical_column:
30
+ data_encoded[col] = label_encoding.fit_transform(data_encoded[col])
31
  return data_encoded.head()
32
 
33
  inputs = [