jaleesahmed commited on
Commit
5a5f8e0
·
1 Parent(s): 7062a89
Files changed (1) hide show
  1. app.py +15 -1
app.py CHANGED
@@ -1,6 +1,8 @@
1
  import pandas as pd
2
  import matplotlib.pyplot as plt
3
  import numpy as np
 
 
4
 
5
  import gradio as gr
6
 
@@ -11,6 +13,18 @@ pd.options.display.max_rows = 300
11
  def outbreak(plot_type):
12
  df = pd.read_csv('emp_experience_data.csv')
13
  data_encoded = df.copy(deep=True)
 
 
 
 
 
 
 
 
 
 
 
 
14
  if plot_type == "Age Attrition":
15
  fig = plt.figure()
16
  positive_attrition_df = data_encoded.loc[data_encoded['Attrition'] == "Yes"]
@@ -29,7 +43,7 @@ def outbreak(plot_type):
29
  return fig
30
 
31
  inputs = [
32
- gr.Dropdown(["Age Attrition", "Distance Attrition"], label="Plot Type")
33
  ]
34
 
35
  outputs = gr.Plot()
 
1
  import pandas as pd
2
  import matplotlib.pyplot as plt
3
  import numpy as np
4
+ from sklearn.preprocessing import LabelEncoder
5
+ import seaborn as sns
6
 
7
  import gradio as gr
8
 
 
13
  def outbreak(plot_type):
14
  df = pd.read_csv('emp_experience_data.csv')
15
  data_encoded = df.copy(deep=True)
16
+ categorical_column = ['Attrition', 'Gender', 'BusinessTravel', 'Education', 'EmployeeExperience', 'EmployeeFeedbackSentiments', 'Designation',
17
+ 'SalarySatisfaction', 'HealthBenefitsSatisfaction', 'UHGDiscountProgramUsage', 'HealthConscious', 'CareerPathSatisfaction', 'Region']
18
+ label_encoding = LabelEncoder()
19
+ for col in categorical_column:
20
+ data_encoded[col] = label_encoding.fit_transform(data_encoded[col])
21
+
22
+ if plot_type == "Find Data Correlation":
23
+ fig = plt.figure()
24
+ data_correlation = data_encoded.corr()
25
+ plt.rcParams["figure.figsize"] = [10,10]
26
+ sns.heatmap(data_correlation,xticklabels=data_correlation.columns,yticklabels=data_correlation.columns)
27
+ return fig
28
  if plot_type == "Age Attrition":
29
  fig = plt.figure()
30
  positive_attrition_df = data_encoded.loc[data_encoded['Attrition'] == "Yes"]
 
43
  return fig
44
 
45
  inputs = [
46
+ gr.Dropdown(["Find Data Correlation", "Age Attrition", "Distance Attrition"], label="Data Correlation and Visualization")
47
  ]
48
 
49
  outputs = gr.Plot()