jaimin commited on
Commit
253ce19
1 Parent(s): 2b3702d

Upload wideresnet.py

Browse files
Files changed (1) hide show
  1. wideresnet.py +215 -0
wideresnet.py ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import math
3
+ import torch.utils.model_zoo as model_zoo
4
+
5
+
6
+ __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
7
+ 'resnet152']
8
+
9
+
10
+ model_urls = {
11
+ 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
12
+ 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
13
+ 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
14
+ 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
15
+ 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
16
+ }
17
+
18
+
19
+ def conv3x3(in_planes, out_planes, stride=1):
20
+ "3x3 convolution with padding"
21
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
22
+ padding=1, bias=False)
23
+
24
+
25
+ class BasicBlock(nn.Module):
26
+ expansion = 1
27
+
28
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
29
+ super(BasicBlock, self).__init__()
30
+ self.conv1 = conv3x3(inplanes, planes, stride)
31
+ self.bn1 = nn.BatchNorm2d(planes)
32
+ self.relu = nn.ReLU(inplace=True)
33
+ self.conv2 = conv3x3(planes, planes)
34
+ self.bn2 = nn.BatchNorm2d(planes)
35
+ self.downsample = downsample
36
+ self.stride = stride
37
+
38
+ def forward(self, x):
39
+ residual = x
40
+
41
+ out = self.conv1(x)
42
+ out = self.bn1(out)
43
+ out = self.relu(out)
44
+
45
+ out = self.conv2(out)
46
+ out = self.bn2(out)
47
+
48
+ if self.downsample is not None:
49
+ residual = self.downsample(x)
50
+
51
+ out += residual
52
+ out = self.relu(out)
53
+
54
+ return out
55
+
56
+
57
+ class Bottleneck(nn.Module):
58
+ expansion = 4
59
+
60
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
61
+ super(Bottleneck, self).__init__()
62
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
63
+ self.bn1 = nn.BatchNorm2d(planes)
64
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
65
+ padding=1, bias=False)
66
+ self.bn2 = nn.BatchNorm2d(planes)
67
+ self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
68
+ self.bn3 = nn.BatchNorm2d(planes * 4)
69
+ self.relu = nn.ReLU(inplace=True)
70
+ self.downsample = downsample
71
+ self.stride = stride
72
+
73
+ def forward(self, x):
74
+ residual = x
75
+
76
+ out = self.conv1(x)
77
+ out = self.bn1(out)
78
+ out = self.relu(out)
79
+
80
+ out = self.conv2(out)
81
+ out = self.bn2(out)
82
+ out = self.relu(out)
83
+
84
+ out = self.conv3(out)
85
+ out = self.bn3(out)
86
+
87
+ if self.downsample is not None:
88
+ residual = self.downsample(x)
89
+
90
+ out += residual
91
+ out = self.relu(out)
92
+
93
+ return out
94
+
95
+
96
+ class ResNet(nn.Module):
97
+
98
+ def __init__(self, block, layers, num_classes=1000):
99
+ self.inplanes = 64
100
+ super(ResNet, self).__init__()
101
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
102
+ bias=False)
103
+ self.bn1 = nn.BatchNorm2d(64)
104
+ self.relu = nn.ReLU(inplace=True)
105
+ #self.maxpool = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) # previous stride is 2
106
+ self.layer1 = self._make_layer(block, 64, layers[0])
107
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
108
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
109
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
110
+ self.avgpool = nn.AvgPool2d(14)
111
+ self.fc = nn.Linear(512 * block.expansion, num_classes)
112
+
113
+ for m in self.modules():
114
+ if isinstance(m, nn.Conv2d):
115
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
116
+ m.weight.data.normal_(0, math.sqrt(2. / n))
117
+ elif isinstance(m, nn.BatchNorm2d):
118
+ #m.weight.data.fill_(1)
119
+ #m.bias.data.zero_()
120
+ nn.init.constant_(m.weight, 1)
121
+ nn.init.constant_(m.bias, 0)
122
+
123
+ def _make_layer(self, block, planes, blocks, stride=1):
124
+ downsample = None
125
+ if stride != 1 or self.inplanes != planes * block.expansion:
126
+ downsample = nn.Sequential(
127
+ nn.Conv2d(self.inplanes, planes * block.expansion,
128
+ kernel_size=1, stride=stride, bias=False),
129
+ nn.BatchNorm2d(planes * block.expansion),
130
+ )
131
+
132
+ layers = []
133
+ layers.append(block(self.inplanes, planes, stride, downsample))
134
+ self.inplanes = planes * block.expansion
135
+ for i in range(1, blocks):
136
+ layers.append(block(self.inplanes, planes))
137
+
138
+ return nn.Sequential(*layers)
139
+
140
+ def forward(self, x):
141
+ x = self.conv1(x)
142
+ x = self.bn1(x)
143
+ x = self.relu(x)
144
+ #x = self.maxpool(x)
145
+
146
+ x = self.layer1(x)
147
+ x = self.layer2(x)
148
+ x = self.layer3(x)
149
+ x = self.layer4(x)
150
+
151
+ x = self.avgpool(x)
152
+ x = x.view(x.size(0), -1)
153
+ x = self.fc(x)
154
+
155
+ return x
156
+
157
+
158
+ def resnet18(pretrained=False, **kwargs):
159
+ """Constructs a ResNet-18 model.
160
+
161
+ Args:
162
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
163
+ """
164
+ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
165
+ if pretrained:
166
+ model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
167
+ return model
168
+
169
+
170
+ def resnet34(pretrained=False, **kwargs):
171
+ """Constructs a ResNet-34 model.
172
+
173
+ Args:
174
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
175
+ """
176
+ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
177
+ if pretrained:
178
+ model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
179
+ return model
180
+
181
+
182
+ def resnet50(pretrained=False, **kwargs):
183
+ """Constructs a ResNet-50 model.
184
+
185
+ Args:
186
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
187
+ """
188
+ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
189
+ if pretrained:
190
+ model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
191
+ return model
192
+
193
+
194
+ def resnet101(pretrained=False, **kwargs):
195
+ """Constructs a ResNet-101 model.
196
+
197
+ Args:
198
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
199
+ """
200
+ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
201
+ if pretrained:
202
+ model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
203
+ return model
204
+
205
+
206
+ def resnet152(pretrained=False, **kwargs):
207
+ """Constructs a ResNet-152 model.
208
+
209
+ Args:
210
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
211
+ """
212
+ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
213
+ if pretrained:
214
+ model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
215
+ return model