jacopoteneggi commited on
Commit
80dc74c
·
verified ·
1 Parent(s): 24fbc2e
README.md CHANGED
@@ -1,13 +1,15 @@
1
  ---
2
- title: IBYDMT
3
- emoji: 💻
4
- colorFrom: green
5
- colorTo: red
6
  sdk: streamlit
7
- sdk_version: 1.35.0
8
  app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
1
  ---
2
+ title: I Bet You Did Not Mean That
3
+ emoji: 🔎
4
+ colorFrom: blue
5
+ colorTo: indigo
6
  sdk: streamlit
7
+ sdk_version: 1.25.0
8
  app_file: app.py
9
+ datasets:
10
+ - jacopoteneggi/IBYDMT
11
+ preload_from_hub:
12
+ - laion/CLIP-ViT-B-32-laion2B-s34B-b79K open_clip_config.json,open_clip_pytorch_model.bin
13
+ pinned: true
14
+ license: cc-by-nc-4.0
15
+ ---
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import open_clip
3
+ import streamlit as st
4
+ import torch
5
+
6
+ from app_lib.main import main
7
+
8
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9
+
10
+ st.set_page_config(
11
+ layout="wide",
12
+ initial_sidebar_state=st.session_state.get("sidebar_state", "collapsed"),
13
+ )
14
+ st.session_state.sidebar_state = "collapsed"
15
+ st.markdown(
16
+ """
17
+ <style>
18
+ textarea {
19
+ font-family: monospace !important;
20
+ }
21
+ input {
22
+ font-family: monospace !important;
23
+ }
24
+ </style>
25
+ """,
26
+ unsafe_allow_html=True,
27
+ )
28
+
29
+ st.markdown(
30
+ """
31
+ # I Bet You Did Not Mean That
32
+
33
+ Official HF Space for the paper [*I Bet You Did Not Mean That: Testing Semantci Importance via Betting*](https://arxiv.org/pdf/2405.19146), by [Jacopo Teneggi](https://jacopoteneggi.github.io) and [Jeremias Sulam](https://sites.google.com/view/jsulam).
34
+
35
+ ---
36
+ """,
37
+ )
38
+
39
+
40
+ def load_clip():
41
+ model, _, preprocess = open_clip.create_model_and_transforms(
42
+ "hf-hub:laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
43
+ )
44
+ tokenizer = open_clip.get_tokenizer("hf-hub:laion/CLIP-ViT-B-32-laion2B-s34B-b79K")
45
+
46
+
47
+ def test(
48
+ image, class_name, concepts, cardinality, model_name, dataset_name="imagenette"
49
+ ):
50
+ print("test!")
51
+
52
+
53
+ if __name__ == "__main__":
54
+ main()
app_lib/__init__.py ADDED
File without changes
app_lib/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (147 Bytes). View file
 
app_lib/__pycache__/main.cpython-310.pyc ADDED
Binary file (1.38 kB). View file
 
app_lib/__pycache__/user_input.cpython-310.pyc ADDED
Binary file (2.74 kB). View file
 
app_lib/__pycache__/utils.cpython-310.pyc ADDED
Binary file (513 Bytes). View file
 
app_lib/main.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ from app_lib.user_input import (
4
+ get_cardinality,
5
+ get_class_name,
6
+ get_concepts,
7
+ get_image,
8
+ get_model_name,
9
+ )
10
+
11
+
12
+ def main():
13
+ columns = st.columns([0.40, 0.60])
14
+
15
+ with columns[0]:
16
+ model_name = get_model_name()
17
+
18
+ row1 = st.columns(2)
19
+ row2 = st.columns(2)
20
+
21
+ with row1[0]:
22
+ image = get_image()
23
+ st.image(image, use_column_width=True)
24
+ with row1[1]:
25
+ class_name, class_ready, class_error = get_class_name()
26
+ concepts, concepts_ready, concepts_error = get_concepts()
27
+ cardinality = get_cardinality(concepts, concepts_ready)
28
+
29
+ with row2[0]:
30
+ change_image_button = st.button("Change Image", use_container_width=True)
31
+ if change_image_button:
32
+ st.session_state.sidebar_state = "expanded"
33
+ st.experimental_rerun()
34
+ with row2[1]:
35
+ ready = class_ready and concepts_ready
36
+
37
+ error_message = ""
38
+ if class_error is not None:
39
+ error_message += f"- {class_error}\n"
40
+ if concepts_error is not None:
41
+ error_message += f"- {concepts_error}\n"
42
+
43
+ test_button = st.button(
44
+ "Test",
45
+ help=None if ready else error_message,
46
+ use_container_width=True,
47
+ disabled=not ready,
48
+ )
49
+
50
+ if test_button:
51
+ test(image, class_name, concepts, cardinality, model_name)
app_lib/user_input.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ from streamlit_image_select import image_select
4
+
5
+ from app_lib.utils import SUPPORTED_MODELS
6
+
7
+
8
+ def _validate_class_name(class_name):
9
+ if class_name is None:
10
+ return (False, "Class name cannot be empty.")
11
+ if class_name.strip() == "":
12
+ return (False, "Class name cannot be empty.")
13
+ return (True, None)
14
+
15
+
16
+ def _validate_concepts(concepts):
17
+ if len(concepts) < 3:
18
+ return (False, "You must provide at least 3 concepts")
19
+ if len(concepts) > 10:
20
+ return (False, "Maximum 10 concepts allowed")
21
+ return (True, None)
22
+
23
+
24
+ def get_model_name():
25
+ return st.selectbox(
26
+ "Choose a model to test",
27
+ options=SUPPORTED_MODELS,
28
+ help="Name of the vision-language model to test the predictions of.",
29
+ )
30
+
31
+
32
+ def get_image():
33
+ with st.sidebar:
34
+ uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
35
+ image = uploaded_file or image_select(
36
+ label="or select one",
37
+ images=[
38
+ "assets/ace.jpg",
39
+ "assets/ace.jpg",
40
+ "assets/ace.jpg",
41
+ "assets/ace.jpg",
42
+ ],
43
+ )
44
+ return Image.open(image)
45
+
46
+
47
+ def get_class_name():
48
+ class_name = st.text_input(
49
+ "Class to test",
50
+ help="Name of the class to build the zero-shot CLIP classifier with.",
51
+ value="cat",
52
+ )
53
+
54
+ class_ready, class_error = _validate_class_name(class_name)
55
+ return class_name, class_ready, class_error
56
+
57
+
58
+ def get_concepts():
59
+ concepts = st.text_area(
60
+ "Concepts to test (max 10)",
61
+ help="List of concepts to test the predictions of the model with. Write one concept per line.",
62
+ height=160,
63
+ value="piano\ncute\nwhiskers\nmusic\nwild",
64
+ )
65
+ concepts = concepts.split("\n")
66
+ concepts = [concept.strip() for concept in concepts]
67
+ concepts = [concept for concept in concepts if concept != ""]
68
+ concepts = list(set(concepts))
69
+
70
+ concepts_ready, concepts_error = _validate_concepts(concepts)
71
+ return concepts, concepts_ready, concepts_error
72
+
73
+
74
+ def get_cardinality(concepts, concepts_ready):
75
+ return st.slider(
76
+ "Size of conditioning set",
77
+ help="The number of concepts to condition model predictions on.",
78
+ min_value=1,
79
+ max_value=max(2, len(concepts) - 1),
80
+ value=1,
81
+ step=1,
82
+ disabled=not concepts_ready,
83
+ )
app_lib/utils.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import hf_hub_download
2
+
3
+ supported_models_path = hf_hub_download(
4
+ repo_id="jacopoteneggi/IBYDMT",
5
+ filename="supported_models.txt",
6
+ repo_type="dataset",
7
+ )
8
+
9
+ SUPPORTED_MODELS = []
10
+ with open(supported_models_path, "r") as f:
11
+ for line in f:
12
+ line = line.strip()
13
+ model_name, _ = line.split(",")
14
+ SUPPORTED_MODELS.append(model_name)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ streamlit-image-select
2
+ clip @ git+https://github.com/openai/CLIP@main
3
+ open_clip_torch