Spaces:
Running
Running
from abc import ABC, abstractmethod | |
from typing import Dict | |
import numpy as np | |
from ibydmt.utils import _get_cls, _register_cls | |
class Bet(ABC): | |
def __init__(self): | |
pass | |
def compute(self, *args, **kwargs): | |
pass | |
_BETS: Dict[str, Bet] = {} | |
def register_bet(name): | |
return _register_cls(name, dict=_BETS) | |
def get_bet(name): | |
return _get_cls(name, dict=_BETS) | |
class Sign(Bet): | |
def __init__(self, config): | |
super().__init__() | |
self.m = config.get("m", 0.5) | |
self.prev_g = [] | |
def compute(self, g): | |
return self.m * np.sign(g) | |
class Tanh(Bet): | |
def __init__(self, config): | |
super().__init__() | |
self.alpha = config.get("alpha", 0.20) | |
self.prev_g = [] | |
def compute(self, g): | |
if len(self.prev_g) < 2: | |
scale = 1 | |
else: | |
l, u = np.quantile(self.prev_g, [self.alpha / 2, 1 - self.alpha / 2]) | |
scale = u - l | |
self.prev_g.append(g) | |
return np.tanh(g / np.clip(scale, 1e-04, None)) | |