Spaces:
Sleeping
Sleeping
Update UI
Browse files
app.py
CHANGED
@@ -1,55 +1,146 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
|
8 |
-
examples = [
|
9 |
-
"Write a travel blog about a 3-day trip to Thailand.",
|
10 |
-
"Tell me a short story about a robot that has a nice day.",
|
11 |
-
"Compose a tweet to congratulate rustformers on the launch of their HuggingFace Space.",
|
12 |
-
"Explain how a candle works to a 6-year-old in a few sentences.",
|
13 |
-
"What are some of the most common misconceptions about birds?",
|
14 |
-
"Explain why the Rust programming language is so popular.",
|
15 |
-
]
|
16 |
|
17 |
session_config = SessionConfig(threads=2,batch_size=2)
|
18 |
-
model = AutoModel.from_pretrained(repo_name, model_file=file_name,
|
19 |
-
|
20 |
-
def process_stream(instruction, temperature, top_p, top_k, max_new_tokens, seed):
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
prompt=f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
23 |
### Instruction:
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
### Response:
|
26 |
Answer:"""
|
27 |
-
|
28 |
response = ""
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
with gr.Blocks(
|
36 |
theme=gr.themes.Soft(),
|
37 |
css=".disclaimer {font-variant-caps: all-small-caps;}",
|
38 |
) as demo:
|
39 |
gr.Markdown(
|
40 |
-
"""<h1><center>
|
41 |
-
|
42 |
-
This demo uses the [rustformers/llm](https://github.com/rustformers/llm) library via [llm-rs](https://github.com/LLukas22/llm-rs-python) to execute [MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct) on 2 CPU cores.
|
43 |
"""
|
44 |
)
|
|
|
|
|
|
|
|
|
|
|
45 |
with gr.Row():
|
46 |
with gr.Column():
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
elem_id="q-input",
|
52 |
-
)
|
53 |
with gr.Accordion("Advanced Options:", open=False):
|
54 |
with gr.Row():
|
55 |
with gr.Column():
|
@@ -113,39 +204,12 @@ with gr.Blocks(
|
|
113 |
submit = gr.Button("Submit")
|
114 |
with gr.Row():
|
115 |
with gr.Box():
|
116 |
-
gr.Markdown("**
|
117 |
output_7b = gr.Markdown()
|
118 |
|
119 |
-
with gr.Row():
|
120 |
-
gr.Examples(
|
121 |
-
examples=examples,
|
122 |
-
inputs=[instruction],
|
123 |
-
cache_examples=False,
|
124 |
-
fn=process_stream,
|
125 |
-
outputs=output_7b,
|
126 |
-
)
|
127 |
-
with gr.Row():
|
128 |
-
gr.Markdown(
|
129 |
-
"Disclaimer: MPT-7B can produce factually incorrect output, and should not be relied on to produce "
|
130 |
-
"factually accurate information. MPT-7B was trained on various public datasets; while great efforts "
|
131 |
-
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
|
132 |
-
"biased, or otherwise offensive outputs.",
|
133 |
-
elem_classes=["disclaimer"],
|
134 |
-
)
|
135 |
-
with gr.Row():
|
136 |
-
gr.Markdown(
|
137 |
-
"[Privacy policy](https://gist.github.com/samhavens/c29c68cdcd420a9aa0202d0839876dac)",
|
138 |
-
elem_classes=["disclaimer"],
|
139 |
-
)
|
140 |
-
|
141 |
submit.click(
|
142 |
process_stream,
|
143 |
-
inputs=[
|
144 |
-
outputs=output_7b,
|
145 |
-
)
|
146 |
-
instruction.submit(
|
147 |
-
process_stream,
|
148 |
-
inputs=[instruction, temperature, top_p, top_k, max_new_tokens,seed],
|
149 |
outputs=output_7b,
|
150 |
)
|
151 |
|
|
|
1 |
+
import sqlite3
|
2 |
import gradio as gr
|
3 |
+
from hashlib import md5 as hash_algo
|
4 |
+
from re import match
|
5 |
+
from io import BytesIO
|
6 |
+
from pypdf import PdfReader
|
7 |
+
from llm_rs import AutoModel,SessionConfig,GenerationConfig,Precision
|
8 |
|
9 |
+
repo_name = "rustformers/mpt-7b-ggml"
|
10 |
+
file_name = "mpt-7b-instruct-q5_1-ggjt.bin"
|
11 |
+
script_env = 'prod'
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
session_config = SessionConfig(threads=2,batch_size=2)
|
15 |
+
model = AutoModel.from_pretrained(repo_name, model_file=file_name, session_config=session_config,verbose=True)
|
|
|
|
|
16 |
|
17 |
+
def process_stream(rules, log, temperature, top_p, top_k, max_new_tokens, seed):
|
18 |
+
con = sqlite3.connect("history.db")
|
19 |
+
cur = con.cursor()
|
20 |
+
instruction = ''
|
21 |
+
hashes = []
|
22 |
+
|
23 |
+
if type(rules) is not list:
|
24 |
+
rules = [rules]
|
25 |
+
|
26 |
+
for rule in rules:
|
27 |
+
data, hash = get_file_contents(rule)
|
28 |
+
instruction += data + '\n'
|
29 |
+
hashes.append(hash)
|
30 |
+
|
31 |
+
hashes.sort()
|
32 |
+
hashes = hash_algo(''.join(hashes).encode()).hexdigest()
|
33 |
+
|
34 |
+
largest = 0
|
35 |
+
lines = instruction.split('\r\n')
|
36 |
+
|
37 |
+
if len(lines) == 1:
|
38 |
+
lines = instruction.split('\n')
|
39 |
+
|
40 |
+
for line in lines:
|
41 |
+
m = match('^(\d+)\.', line)
|
42 |
+
if m != None:
|
43 |
+
num = int(line[m.start():m.end()-1])
|
44 |
+
|
45 |
+
if num > largest:
|
46 |
+
largest = num
|
47 |
+
|
48 |
+
instruction += str(largest + 1) + '. '
|
49 |
+
|
50 |
+
query, hash = get_file_contents(log)
|
51 |
+
hashes = hash_algo((hashes + hash).encode()).hexdigest()
|
52 |
+
|
53 |
+
instruction = instruction.replace('\r\r\n', '\n')
|
54 |
+
|
55 |
prompt=f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
56 |
### Instruction:
|
57 |
+
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.
|
58 |
+
|
59 |
+
Q: Read the rules stated below and check the queries for any violation. State the rules which are violated by a query (if any). Also suggest a possible remediation, if possible. Do not make any assumptions outside of the rules stated below.
|
60 |
+
|
61 |
+
{instruction}The queries are as follows:
|
62 |
+
{query}
|
63 |
+
|
64 |
+
A:
|
65 |
+
|
66 |
### Response:
|
67 |
Answer:"""
|
68 |
+
|
69 |
response = ""
|
70 |
+
row = cur.execute('SELECT response FROM queries WHERE hexdigest = ?', [hashes]).fetchone()
|
71 |
+
|
72 |
+
if row != None:
|
73 |
+
response += "Cached Result:\n" + row[0]
|
74 |
yield response
|
75 |
+
else:
|
76 |
+
if script_env != 'test':
|
77 |
+
generation_config = GenerationConfig(seed=seed,temperature=temperature,top_p=top_p,top_k=top_k,max_new_tokens=max_new_tokens)
|
78 |
+
streamer = model.stream(prompt=prompt,generation_config=generation_config)
|
79 |
+
for new_text in streamer:
|
80 |
+
response += new_text
|
81 |
+
yield response
|
82 |
+
else:
|
83 |
+
num = 0
|
84 |
+
while num < 100:
|
85 |
+
response += " " + str(num)
|
86 |
+
num += 1
|
87 |
+
yield response
|
88 |
+
|
89 |
+
cur.execute('INSERT INTO queries VALUES(?, ?)', (hashes, response))
|
90 |
+
con.commit()
|
91 |
+
|
92 |
+
cur.close()
|
93 |
+
con.close()
|
94 |
+
|
95 |
+
def get_file_contents(file):
|
96 |
+
data = None
|
97 |
+
byte_hash = ''
|
98 |
+
|
99 |
+
with open(file.name, 'rb') as f:
|
100 |
+
data = f.read()
|
101 |
+
byte_hash = hash_algo(data).hexdigest()
|
102 |
+
|
103 |
+
if file.name.endswith('.pdf'):
|
104 |
+
rdr = PdfReader(BytesIO(data))
|
105 |
+
data = ''
|
106 |
+
|
107 |
+
for page in rdr.pages:
|
108 |
+
data += page.extract_text()
|
109 |
+
else:
|
110 |
+
data = data.decode()
|
111 |
+
|
112 |
+
if file.name.endswith(".csv"):
|
113 |
+
data = data.replace(',', ' ')
|
114 |
+
|
115 |
+
return (data, byte_hash)
|
116 |
|
117 |
+
def upload_log_file(files):
|
118 |
+
file_paths = [file.name for file in files]
|
119 |
+
return file_paths
|
120 |
+
|
121 |
+
def upload_file(files):
|
122 |
+
file_paths = [file.name for file in files]
|
123 |
+
return file_paths
|
124 |
|
125 |
with gr.Blocks(
|
126 |
theme=gr.themes.Soft(),
|
127 |
css=".disclaimer {font-variant-caps: all-small-caps;}",
|
128 |
) as demo:
|
129 |
gr.Markdown(
|
130 |
+
"""<h1><center>Grid 5.0 Information Security Track</center></h1>
|
|
|
|
|
131 |
"""
|
132 |
)
|
133 |
+
|
134 |
+
rules = gr.File(file_count="multiple")
|
135 |
+
upload_button = gr.UploadButton("Click to upload a new Compliance Document", file_types=[".txt", ".pdf"], file_count="multiple")
|
136 |
+
upload_button.upload(upload_file, upload_button, rules)
|
137 |
+
|
138 |
with gr.Row():
|
139 |
with gr.Column():
|
140 |
+
log = gr.File()
|
141 |
+
upload_log_button = gr.UploadButton("Click to upload a log file", file_types=[".txt", ".csv", ".pdf"], file_count="multiple")
|
142 |
+
upload_log_button.upload(upload_log_file, upload_log_button, log)
|
143 |
+
|
|
|
|
|
144 |
with gr.Accordion("Advanced Options:", open=False):
|
145 |
with gr.Row():
|
146 |
with gr.Column():
|
|
|
204 |
submit = gr.Button("Submit")
|
205 |
with gr.Row():
|
206 |
with gr.Box():
|
207 |
+
gr.Markdown("**Output**")
|
208 |
output_7b = gr.Markdown()
|
209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
submit.click(
|
211 |
process_stream,
|
212 |
+
inputs=[rules, log, temperature, top_p, top_k, max_new_tokens,seed],
|
|
|
|
|
|
|
|
|
|
|
213 |
outputs=output_7b,
|
214 |
)
|
215 |
|