root
commited on
Commit
·
bddf9c4
1
Parent(s):
670bed3
qwen30b
Browse files
app.py
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
appp.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
lastapp.py
CHANGED
|
@@ -19,10 +19,8 @@ from utils import (
|
|
| 19 |
load_audio,
|
| 20 |
extract_audio_duration,
|
| 21 |
extract_mfcc_features,
|
| 22 |
-
calculate_lyrics_length,
|
| 23 |
format_genre_results,
|
| 24 |
-
ensure_cuda_availability
|
| 25 |
-
preprocess_audio_for_model
|
| 26 |
)
|
| 27 |
from emotionanalysis import MusicAnalyzer
|
| 28 |
import librosa
|
|
@@ -106,6 +104,75 @@ llm_pipeline = pipeline(
|
|
| 106 |
# Initialize music emotion analyzer
|
| 107 |
music_analyzer = MusicAnalyzer()
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
# New function: Count syllables in text
|
| 110 |
def count_syllables(text):
|
| 111 |
"""Count syllables in a given text using the pronouncing library."""
|
|
@@ -113,31 +180,7 @@ def count_syllables(text):
|
|
| 113 |
syllable_count = 0
|
| 114 |
|
| 115 |
for word in words:
|
| 116 |
-
|
| 117 |
-
pronunciations = pronouncing.phones_for_word(word)
|
| 118 |
-
if pronunciations:
|
| 119 |
-
# Count syllables in the first pronunciation
|
| 120 |
-
syllable_count += pronouncing.syllable_count(pronunciations[0])
|
| 121 |
-
else:
|
| 122 |
-
# Fallback: estimate syllables based on vowel groups
|
| 123 |
-
vowels = "aeiouy"
|
| 124 |
-
count = 0
|
| 125 |
-
prev_is_vowel = False
|
| 126 |
-
|
| 127 |
-
for char in word:
|
| 128 |
-
is_vowel = char.lower() in vowels
|
| 129 |
-
if is_vowel and not prev_is_vowel:
|
| 130 |
-
count += 1
|
| 131 |
-
prev_is_vowel = is_vowel
|
| 132 |
-
|
| 133 |
-
if word.endswith('e'):
|
| 134 |
-
count -= 1
|
| 135 |
-
if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
|
| 136 |
-
count += 1
|
| 137 |
-
if count == 0:
|
| 138 |
-
count = 1
|
| 139 |
-
|
| 140 |
-
syllable_count += count
|
| 141 |
|
| 142 |
return syllable_count
|
| 143 |
|
|
@@ -304,8 +347,7 @@ def detect_beats(y, sr):
|
|
| 304 |
onset_envelope=combined_onset,
|
| 305 |
sr=sr,
|
| 306 |
tightness=100,
|
| 307 |
-
start_bpm=60
|
| 308 |
-
std_bpm=20 # Allow wider variations
|
| 309 |
)
|
| 310 |
tempo_candidates.append(tempo2)
|
| 311 |
beat_candidates.append(beats2)
|
|
@@ -487,6 +529,281 @@ def detect_beats(y, sr):
|
|
| 487 |
"phrases": phrases
|
| 488 |
}
|
| 489 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 490 |
def detect_sections(y, sr):
|
| 491 |
"""
|
| 492 |
Advanced detection of musical sections with adaptive segmentation and improved classification.
|
|
@@ -768,6 +1085,24 @@ def create_flexible_syllable_templates(beats_info, genre=None, phrase_mode='defa
|
|
| 768 |
import numpy as np
|
| 769 |
from sklearn.cluster import KMeans
|
| 770 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 771 |
# Extract basic beat information
|
| 772 |
beat_times = beats_info.get("beat_times", [])
|
| 773 |
beat_strengths = beats_info.get("beat_strengths", [1.0] * len(beat_times))
|
|
@@ -1169,10 +1504,10 @@ def format_syllable_templates_for_prompt(syllable_templates, arrow="→", line_w
|
|
| 1169 |
|
| 1170 |
return "\n".join(output)
|
| 1171 |
|
| 1172 |
-
def verify_flexible_syllable_counts(lyrics, templates):
|
| 1173 |
"""
|
| 1174 |
Enhanced verification of syllable counts and stress patterns with precise alignment analysis
|
| 1175 |
-
|
| 1176 |
"""
|
| 1177 |
import re
|
| 1178 |
import pronouncing
|
|
@@ -1180,74 +1515,6 @@ def verify_flexible_syllable_counts(lyrics, templates):
|
|
| 1180 |
import functools
|
| 1181 |
from itertools import chain
|
| 1182 |
|
| 1183 |
-
# Apply caching to improve performance for repeated word lookups
|
| 1184 |
-
@functools.lru_cache(maxsize=512)
|
| 1185 |
-
def cached_phones_for_word(word):
|
| 1186 |
-
return pronouncing.phones_for_word(word)
|
| 1187 |
-
|
| 1188 |
-
@functools.lru_cache(maxsize=512)
|
| 1189 |
-
def count_syllables_for_word(word):
|
| 1190 |
-
"""Count syllables in a single word with caching for performance."""
|
| 1191 |
-
# Try using pronouncing library first
|
| 1192 |
-
pronunciations = cached_phones_for_word(word.lower())
|
| 1193 |
-
if pronunciations:
|
| 1194 |
-
return pronouncing.syllable_count(pronunciations[0])
|
| 1195 |
-
|
| 1196 |
-
# Fallback method for words not in the pronouncing dictionary
|
| 1197 |
-
vowels = "aeiouy"
|
| 1198 |
-
word = word.lower()
|
| 1199 |
-
count = 0
|
| 1200 |
-
prev_is_vowel = False
|
| 1201 |
-
|
| 1202 |
-
for char in word:
|
| 1203 |
-
is_vowel = char in vowels
|
| 1204 |
-
if is_vowel and not prev_is_vowel:
|
| 1205 |
-
count += 1
|
| 1206 |
-
prev_is_vowel = is_vowel
|
| 1207 |
-
|
| 1208 |
-
# Handle special cases
|
| 1209 |
-
if word.endswith('e') and not word.endswith('le'):
|
| 1210 |
-
count -= 1
|
| 1211 |
-
if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
|
| 1212 |
-
count += 1
|
| 1213 |
-
if count == 0:
|
| 1214 |
-
count = 1
|
| 1215 |
-
|
| 1216 |
-
return count
|
| 1217 |
-
|
| 1218 |
-
@functools.lru_cache(maxsize=512)
|
| 1219 |
-
def get_word_stress(word):
|
| 1220 |
-
"""Get the stress pattern for a word with improved fallback handling."""
|
| 1221 |
-
pronunciations = cached_phones_for_word(word.lower())
|
| 1222 |
-
if pronunciations:
|
| 1223 |
-
return pronouncing.stresses(pronunciations[0])
|
| 1224 |
-
|
| 1225 |
-
# Enhanced fallback for words not in the dictionary
|
| 1226 |
-
syllables = count_syllables_for_word(word)
|
| 1227 |
-
|
| 1228 |
-
# Common English stress patterns by word length
|
| 1229 |
-
if syllables == 1:
|
| 1230 |
-
return "1" # Single syllable words are stressed
|
| 1231 |
-
elif syllables == 2:
|
| 1232 |
-
# Most 2-syllable nouns and adjectives stress first syllable
|
| 1233 |
-
# Common endings that indicate second-syllable stress
|
| 1234 |
-
second_syllable_stress = ["ing", "er", "or", "ize", "ise", "ate", "ect", "end", "ure"]
|
| 1235 |
-
if any(word.endswith(ending) for ending in second_syllable_stress):
|
| 1236 |
-
return "01"
|
| 1237 |
-
else:
|
| 1238 |
-
return "10" # Default for 2-syllable words
|
| 1239 |
-
elif syllables == 3:
|
| 1240 |
-
# Common endings for specific stress patterns in 3-syllable words
|
| 1241 |
-
if any(word.endswith(ending) for ending in ["ity", "ety", "ify", "ogy", "graphy"]):
|
| 1242 |
-
return "100" # First syllable stress
|
| 1243 |
-
elif any(word.endswith(ending) for ending in ["ation", "ious", "itis"]):
|
| 1244 |
-
return "010" # Middle syllable stress
|
| 1245 |
-
else:
|
| 1246 |
-
return "100" # Default for 3-syllable words
|
| 1247 |
-
else:
|
| 1248 |
-
# For longer words, use common English patterns
|
| 1249 |
-
return "1" + "0" * (syllables - 1)
|
| 1250 |
-
|
| 1251 |
# Split lyrics into lines
|
| 1252 |
lines = [line.strip() for line in lyrics.split("\n") if line.strip()]
|
| 1253 |
|
|
@@ -1463,6 +1730,97 @@ def verify_flexible_syllable_counts(lyrics, templates):
|
|
| 1463 |
# If no matching template was found
|
| 1464 |
verification_notes.append(f"Line {i+1}: Unable to find matching template pattern")
|
| 1465 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1466 |
# Only add detailed analysis if we have rhythm mismatches
|
| 1467 |
if verification_notes:
|
| 1468 |
lyrics += "\n\n[Note: Potential rhythm mismatches detected in these lines:]\n"
|
|
@@ -1660,6 +2018,28 @@ def generate_lyrics(genre, duration, emotion_results, song_structure=None):
|
|
| 1660 |
Returns:
|
| 1661 |
Generated lyrics aligned with the rhythm patterns of the music
|
| 1662 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1663 |
# Extract emotion and theme data from analysis results
|
| 1664 |
primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
|
| 1665 |
primary_theme = emotion_results["theme_analysis"]["primary_theme"]
|
|
@@ -1682,7 +2062,35 @@ def generate_lyrics(genre, duration, emotion_results, song_structure=None):
|
|
| 1682 |
structure_visualization += f"Song Duration: {duration:.1f} seconds\n"
|
| 1683 |
structure_visualization += f"Tempo: {tempo:.1f} BPM\n\n"
|
| 1684 |
|
| 1685 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1686 |
# Try to use flexible structure if available
|
| 1687 |
if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
|
| 1688 |
flexible = song_structure["flexible_structure"]
|
|
@@ -1982,8 +2390,16 @@ def generate_lyrics(genre, duration, emotion_results, song_structure=None):
|
|
| 1982 |
# Store the syllable guidance for later use
|
| 1983 |
syllable_guidance_text = syllable_guidance
|
| 1984 |
|
| 1985 |
-
# Determine if we should use traditional sections or
|
| 1986 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1987 |
# If we have more than 4 segments, it's likely not a traditional song structure
|
| 1988 |
if "segments" in song_structure["flexible_structure"]:
|
| 1989 |
segments = song_structure["flexible_structure"]["segments"]
|
|
@@ -1991,12 +2407,57 @@ def generate_lyrics(genre, duration, emotion_results, song_structure=None):
|
|
| 1991 |
use_sections = False
|
| 1992 |
|
| 1993 |
# Create enhanced prompt with better rhythm alignment instructions
|
| 1994 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1995 |
# Traditional approach with sections
|
| 1996 |
content = f"""
|
| 1997 |
You are a talented songwriter who specializes in {genre} music.
|
| 1998 |
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.
|
| 1999 |
|
|
|
|
|
|
|
| 2000 |
Music analysis has detected the following qualities in the music:
|
| 2001 |
- Tempo: {tempo:.1f} BPM
|
| 2002 |
- Key: {key} {mode}
|
|
@@ -2014,14 +2475,6 @@ CRITICAL PRINCIPLES FOR RHYTHMIC ALIGNMENT:
|
|
| 2014 |
6. Pay attention to strength values in the pattern (higher values like 0.95 need stronger emphasis)
|
| 2015 |
7. For half-syllable positions (like S1.5 or m2.5), use short, quick syllables or words with weak vowels
|
| 2016 |
|
| 2017 |
-
Think step by step about how to match words to the rhythm pattern:
|
| 2018 |
-
1. First, identify the strong beats in each line pattern
|
| 2019 |
-
2. Choose words where stressed syllables naturally fall on strong beats
|
| 2020 |
-
3. Count syllables carefully to ensure they match the pattern precisely
|
| 2021 |
-
4. Test your line against the pattern by mapping each syllable
|
| 2022 |
-
|
| 2023 |
-
IMPORTANT: Each line of lyrics must match exactly to ONE musical phrase/segment.
|
| 2024 |
-
|
| 2025 |
The lyrics should:
|
| 2026 |
- Perfectly capture the essence and style of {genre} music
|
| 2027 |
- Express the {primary_emotion} emotion and {primary_theme} theme
|
|
@@ -2029,6 +2482,8 @@ The lyrics should:
|
|
| 2029 |
- Be completely original
|
| 2030 |
- Match the song duration of {duration:.1f} seconds
|
| 2031 |
|
|
|
|
|
|
|
| 2032 |
IMPORTANT: Your generated lyrics must be followed by a section titled "[RHYTHM_ANALYSIS_SECTION]"
|
| 2033 |
where you analyze how well the lyrics align with the musical rhythm. This section MUST appear
|
| 2034 |
even if there are no rhythm issues. Include the following in your analysis:
|
|
@@ -2044,6 +2499,8 @@ Your lyrics:
|
|
| 2044 |
You are a talented songwriter who specializes in {genre} music.
|
| 2045 |
Write original lyrics that match the rhythm of a {genre} music segment that is {duration:.1f} seconds long.
|
| 2046 |
|
|
|
|
|
|
|
| 2047 |
Music analysis has detected the following qualities:
|
| 2048 |
- Tempo: {tempo:.1f} BPM
|
| 2049 |
- Key: {key} {mode}
|
|
@@ -2061,19 +2518,6 @@ CRITICAL PRINCIPLES FOR RHYTHMIC ALIGNMENT:
|
|
| 2061 |
6. Pay attention to strength values in the pattern (higher values like 0.95 need stronger emphasis)
|
| 2062 |
7. For half-syllable positions (like S1.5 or m2.5), use short, quick syllables or words with weak vowels
|
| 2063 |
|
| 2064 |
-
Think step by step about how to match words to the rhythm pattern:
|
| 2065 |
-
1. First, identify the strong beats in each line pattern
|
| 2066 |
-
2. Choose words where stressed syllables naturally fall on strong beats
|
| 2067 |
-
3. Count syllables carefully to ensure they match the pattern precisely
|
| 2068 |
-
4. Test your line against the pattern by mapping each syllable
|
| 2069 |
-
|
| 2070 |
-
CRITICAL: Each line of lyrics must match exactly to ONE musical phrase/segment.
|
| 2071 |
-
|
| 2072 |
-
For perfect alignment examples:
|
| 2073 |
-
- "FEEL the RHY-thm in your SOUL" – stressed syllables on strong beats
|
| 2074 |
-
- "to-DAY we DANCE a-LONG" – natural speech stress matches musical stress
|
| 2075 |
-
- "WAIT-ing FOR the SUN to RISE" – syllable emphasis aligns with beat emphasis
|
| 2076 |
-
|
| 2077 |
The lyrics should:
|
| 2078 |
- Perfectly capture the essence and style of {genre} music
|
| 2079 |
- Express the {primary_emotion} emotion and {primary_theme} theme
|
|
@@ -2084,6 +2528,8 @@ The lyrics should:
|
|
| 2084 |
Include any section labels like [Verse] or [Chorus] as indicated in the rhythm patterns above.
|
| 2085 |
Each line of lyrics must follow the corresponding segment's rhythm pattern EXACTLY.
|
| 2086 |
|
|
|
|
|
|
|
| 2087 |
IMPORTANT: Your generated lyrics must be followed by a section titled "[RHYTHM_ANALYSIS_SECTION]"
|
| 2088 |
where you analyze how well the lyrics align with the musical rhythm. This section MUST appear
|
| 2089 |
even if there are no rhythm issues. Include the following in your analysis:
|
|
@@ -2096,6 +2542,7 @@ Your lyrics:
|
|
| 2096 |
|
| 2097 |
# Format as a chat message for the LLM
|
| 2098 |
messages = [
|
|
|
|
| 2099 |
{"role": "user", "content": content}
|
| 2100 |
]
|
| 2101 |
|
|
@@ -2112,13 +2559,21 @@ Your lyrics:
|
|
| 2112 |
# Configure generation parameters based on model capability
|
| 2113 |
generation_params = {
|
| 2114 |
"do_sample": True,
|
| 2115 |
-
"temperature": 0.
|
| 2116 |
-
"top_p": 0.
|
| 2117 |
-
"top_k": 50,
|
| 2118 |
"repetition_penalty": 1.2,
|
| 2119 |
-
"max_new_tokens": 2048
|
|
|
|
| 2120 |
}
|
| 2121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2122 |
# Generate output
|
| 2123 |
generated_ids = llm_model.generate(
|
| 2124 |
**model_inputs,
|
|
@@ -2128,24 +2583,123 @@ Your lyrics:
|
|
| 2128 |
# Extract output tokens
|
| 2129 |
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
| 2130 |
|
| 2131 |
-
#
|
| 2132 |
lyrics = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
| 2133 |
|
| 2134 |
-
#
|
|
|
|
| 2135 |
if "<thinking>" in lyrics and "</thinking>" in lyrics:
|
| 2136 |
lyrics = lyrics.split("</thinking>")[1].strip()
|
| 2137 |
|
| 2138 |
-
#
|
| 2139 |
-
thinking_markers = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2140 |
for marker in thinking_markers:
|
| 2141 |
if marker in lyrics:
|
| 2142 |
parts = lyrics.split(marker)
|
| 2143 |
if len(parts) > 1:
|
| 2144 |
lyrics = parts[-1].strip() # Take the last part after any thinking marker
|
| 2145 |
|
| 2146 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2147 |
if templates_for_verification:
|
| 2148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2149 |
|
| 2150 |
# Check if significant issues were detected
|
| 2151 |
if "[Note: Potential rhythm mismatches" in verified_lyrics and "Detailed Alignment Analysis" in verified_lyrics:
|
|
@@ -2206,7 +2760,7 @@ Improved lyrics with fixed rhythm:
|
|
| 2206 |
refined_lyrics = llm_tokenizer.decode(refined_output_ids, skip_special_tokens=True).strip()
|
| 2207 |
|
| 2208 |
# Verify the refined lyrics
|
| 2209 |
-
refined_verified_lyrics = verify_flexible_syllable_counts(refined_lyrics,
|
| 2210 |
|
| 2211 |
# Only use refined lyrics if they're better (fewer notes)
|
| 2212 |
if "[Note: Potential rhythm mismatches" not in refined_verified_lyrics:
|
|
@@ -2274,6 +2828,16 @@ Improved lyrics with fixed rhythm:
|
|
| 2274 |
|
| 2275 |
if len(templates_for_verification) > 30:
|
| 2276 |
syllable_analysis += f"... and {len(templates_for_verification) - 30} more lines\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2277 |
|
| 2278 |
# Add structure visualization to syllable analysis
|
| 2279 |
syllable_analysis += "\n" + structure_visualization
|
|
@@ -2329,24 +2893,28 @@ def process_audio(audio_file):
|
|
| 2329 |
print(f"Error in genre classification: {str(e)}")
|
| 2330 |
return f"Error in genre classification: {str(e)}", None, ast_results
|
| 2331 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2332 |
print("Step 4/5: Analyzing music emotions, themes, and structure...")
|
| 2333 |
# Analyze music emotions and themes
|
| 2334 |
try:
|
| 2335 |
emotion_results = music_analyzer.analyze_music(audio_file)
|
| 2336 |
except Exception as e:
|
| 2337 |
print(f"Error in emotion analysis: {str(e)}")
|
| 2338 |
-
# Continue
|
| 2339 |
-
emotion_results = {
|
| 2340 |
-
"emotion_analysis": {"primary_emotion": "Unknown"},
|
| 2341 |
-
"theme_analysis": {"primary_theme": "Unknown"},
|
| 2342 |
-
"rhythm_analysis": {"tempo": 0},
|
| 2343 |
-
"tonal_analysis": {"key": "Unknown", "mode": ""},
|
| 2344 |
-
"summary": {"tempo": 0, "key": "Unknown", "mode": "", "primary_emotion": "Unknown", "primary_theme": "Unknown"}
|
| 2345 |
-
}
|
| 2346 |
|
| 2347 |
# Calculate detailed song structure for better lyrics alignment
|
| 2348 |
try:
|
| 2349 |
-
#
|
| 2350 |
y, sr = load_audio(audio_file, SAMPLE_RATE)
|
| 2351 |
|
| 2352 |
# Analyze beats and phrases for music-aligned lyrics
|
|
@@ -2427,21 +2995,21 @@ def process_audio(audio_file):
|
|
| 2427 |
"end": segment_end
|
| 2428 |
})
|
| 2429 |
|
| 2430 |
-
# Create
|
| 2431 |
flexible_structure = {
|
| 2432 |
"beats": beats_info,
|
| 2433 |
"segments": segments
|
| 2434 |
}
|
| 2435 |
|
| 2436 |
-
#
|
| 2437 |
song_structure = {
|
| 2438 |
"beats": beats_info,
|
| 2439 |
"sections": sections_info,
|
| 2440 |
-
"flexible_structure": flexible_structure
|
|
|
|
| 2441 |
}
|
| 2442 |
|
| 2443 |
# Add syllable counts to each section
|
| 2444 |
-
song_structure["syllables"] = []
|
| 2445 |
for section in sections_info:
|
| 2446 |
# Create syllable templates for sections
|
| 2447 |
section_beats_info = {
|
|
@@ -2477,12 +3045,37 @@ def process_audio(audio_file):
|
|
| 2477 |
|
| 2478 |
song_structure["syllables"].append(section_info)
|
| 2479 |
|
| 2480 |
-
|
| 2481 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2482 |
except Exception as e:
|
| 2483 |
print(f"Error analyzing song structure: {str(e)}")
|
| 2484 |
-
# Continue
|
| 2485 |
-
song_structure = None
|
| 2486 |
|
| 2487 |
print("Step 5/5: Generating rhythmically aligned lyrics...")
|
| 2488 |
# Generate lyrics based on top genre, emotion analysis, and song structure
|
|
@@ -2526,6 +3119,476 @@ def process_audio(audio_file):
|
|
| 2526 |
print(error_msg)
|
| 2527 |
return error_msg, None, []
|
| 2528 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2529 |
# Create enhanced Gradio interface with tabs for better organization
|
| 2530 |
with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
|
| 2531 |
gr.Markdown("# Music Genre Classifier & Lyrics Generator")
|
|
@@ -2566,126 +3629,14 @@ with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
|
|
| 2566 |
with gr.TabItem("Generated Lyrics"):
|
| 2567 |
lyrics_output = gr.Textbox(label="Lyrics", lines=18)
|
| 2568 |
|
| 2569 |
-
with gr.TabItem("
|
| 2570 |
-
|
| 2571 |
-
|
| 2572 |
-
with gr.TabItem("Syllable Analysis"):
|
| 2573 |
-
syllable_analysis_output = gr.Textbox(label="Detailed Syllable Analysis", lines=16)
|
| 2574 |
-
prompt_template_output = gr.Textbox(label="Prompt Template", lines=16)
|
| 2575 |
-
|
| 2576 |
-
# Processing function with better handling of results
|
| 2577 |
-
def display_results(audio_file):
|
| 2578 |
-
if audio_file is None:
|
| 2579 |
-
return "Please upload an audio file.", "No emotion analysis available.", "No audio classification available.", "No lyrics generated.", "No rhythm analysis available.", "No syllable analysis available.", "No prompt template available."
|
| 2580 |
-
|
| 2581 |
-
try:
|
| 2582 |
-
# Process audio and get results
|
| 2583 |
-
results = process_audio(audio_file)
|
| 2584 |
-
|
| 2585 |
-
# Check if we got an error message instead of results
|
| 2586 |
-
if isinstance(results, str) and "Error" in results:
|
| 2587 |
-
return results, "Error in analysis", "Error in classification", "No lyrics generated", "No rhythm analysis available", "No syllable analysis available", "No prompt template available"
|
| 2588 |
-
elif isinstance(results, tuple) and isinstance(results[0], str) and "Error" in results[0]:
|
| 2589 |
-
return results[0], "Error in analysis", "Error in classification", "No lyrics generated", "No rhythm analysis available", "No syllable analysis available", "No prompt template available"
|
| 2590 |
-
|
| 2591 |
-
# For backwards compatibility, handle both dictionary and tuple returns
|
| 2592 |
-
if isinstance(results, dict):
|
| 2593 |
-
genre_results = results.get("genre_results", "Genre classification failed")
|
| 2594 |
-
lyrics = results.get("lyrics", "Lyrics generation failed")
|
| 2595 |
-
ast_results = results.get("ast_results", [])
|
| 2596 |
-
|
| 2597 |
-
# Use clean lyrics if available
|
| 2598 |
-
clean_lyrics = results.get("clean_lyrics", lyrics)
|
| 2599 |
-
rhythm_analysis = results.get("rhythm_analysis", "No detailed rhythm analysis available")
|
| 2600 |
-
|
| 2601 |
-
# Extract syllable analysis and prompt template
|
| 2602 |
-
syllable_analysis = results.get("syllable_analysis", "No syllable analysis available")
|
| 2603 |
-
prompt_template = results.get("prompt_template", "No prompt template available")
|
| 2604 |
-
else:
|
| 2605 |
-
# Handle the old tuple return format
|
| 2606 |
-
genre_results, lyrics, ast_results = results
|
| 2607 |
-
clean_lyrics = lyrics
|
| 2608 |
-
|
| 2609 |
-
# Extract rhythm analysis if present
|
| 2610 |
-
rhythm_analysis = "No detailed rhythm analysis available"
|
| 2611 |
-
if isinstance(lyrics, str):
|
| 2612 |
-
# First check for new format
|
| 2613 |
-
if "[Note: Rhythm Analysis]" in lyrics:
|
| 2614 |
-
clean_lyrics = lyrics.split("[Note: Rhythm Analysis]")[0].strip()
|
| 2615 |
-
rhythm_analysis = lyrics.split("[Note: Rhythm Analysis]")[1]
|
| 2616 |
-
# Check for old format
|
| 2617 |
-
elif "[Note: Potential rhythm mismatches" in lyrics:
|
| 2618 |
-
clean_lyrics = lyrics.split("[Note:")[0].strip()
|
| 2619 |
-
rhythm_analysis = "[Note:" + lyrics.split("[Note:")[1]
|
| 2620 |
-
|
| 2621 |
-
# Default values for new fields
|
| 2622 |
-
syllable_analysis = "No syllable analysis available"
|
| 2623 |
-
prompt_template = "No prompt template available"
|
| 2624 |
-
|
| 2625 |
-
# Format emotion analysis results
|
| 2626 |
-
try:
|
| 2627 |
-
emotion_results = music_analyzer.analyze_music(audio_file)
|
| 2628 |
-
emotion_text = f"Tempo: {emotion_results['summary']['tempo']:.1f} BPM\n"
|
| 2629 |
-
emotion_text += f"Key: {emotion_results['summary']['key']} {emotion_results['summary']['mode']}\n"
|
| 2630 |
-
emotion_text += f"Primary Emotion: {emotion_results['summary']['primary_emotion']}\n"
|
| 2631 |
-
emotion_text += f"Primary Theme: {emotion_results['summary']['primary_theme']}"
|
| 2632 |
-
|
| 2633 |
-
# Add detailed song structure information if available
|
| 2634 |
-
try:
|
| 2635 |
-
audio_data = extract_audio_features(audio_file)
|
| 2636 |
-
song_structure = calculate_detailed_song_structure(audio_data)
|
| 2637 |
-
|
| 2638 |
-
emotion_text += "\n\nSong Structure:\n"
|
| 2639 |
-
for section in song_structure["syllables"]:
|
| 2640 |
-
emotion_text += f"- {section['type'].capitalize()}: {section['start']:.1f}s to {section['end']:.1f}s "
|
| 2641 |
-
emotion_text += f"({section['duration']:.1f}s, {section['beat_count']} beats, "
|
| 2642 |
-
|
| 2643 |
-
if "syllable_template" in section:
|
| 2644 |
-
emotion_text += f"template: {section['syllable_template']})\n"
|
| 2645 |
-
else:
|
| 2646 |
-
emotion_text += f"~{section['syllable_count']} syllables)\n"
|
| 2647 |
-
|
| 2648 |
-
# Add flexible structure info if available
|
| 2649 |
-
if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
|
| 2650 |
-
flexible = song_structure["flexible_structure"]
|
| 2651 |
-
if "segments" in flexible and flexible["segments"]:
|
| 2652 |
-
emotion_text += "\nDetailed Rhythm Analysis:\n"
|
| 2653 |
-
for i, segment in enumerate(flexible["segments"][:5]): # Show first 5 segments
|
| 2654 |
-
emotion_text += f"- Segment {i+1}: {segment['start']:.1f}s to {segment['end']:.1f}s, "
|
| 2655 |
-
emotion_text += f"pattern: {segment.get('syllable_template', 'N/A')}\n"
|
| 2656 |
-
|
| 2657 |
-
if len(flexible["segments"]) > 5:
|
| 2658 |
-
emotion_text += f" (+ {len(flexible['segments']) - 5} more segments)\n"
|
| 2659 |
-
|
| 2660 |
-
except Exception as e:
|
| 2661 |
-
print(f"Error displaying song structure: {str(e)}")
|
| 2662 |
-
# Continue without showing structure details
|
| 2663 |
-
|
| 2664 |
-
except Exception as e:
|
| 2665 |
-
print(f"Error in emotion analysis: {str(e)}")
|
| 2666 |
-
emotion_text = f"Error in emotion analysis: {str(e)}"
|
| 2667 |
-
|
| 2668 |
-
# Format AST classification results
|
| 2669 |
-
if ast_results and isinstance(ast_results, list):
|
| 2670 |
-
ast_text = "Audio Classification Results:\n"
|
| 2671 |
-
for result in ast_results[:5]: # Show top 5 results
|
| 2672 |
-
ast_text += f"{result['label']}: {result['score']*100:.2f}%\n"
|
| 2673 |
-
else:
|
| 2674 |
-
ast_text = "No valid audio classification results available."
|
| 2675 |
-
|
| 2676 |
-
# Return all results including new fields
|
| 2677 |
-
return genre_results, emotion_text, ast_text, clean_lyrics, rhythm_analysis, syllable_analysis, prompt_template
|
| 2678 |
-
|
| 2679 |
-
except Exception as e:
|
| 2680 |
-
error_msg = f"Error: {str(e)}"
|
| 2681 |
-
print(error_msg)
|
| 2682 |
-
return error_msg, "Error in emotion analysis", "Error in audio classification", "No lyrics generated", "No rhythm analysis available", "No syllable analysis available", "No prompt template available"
|
| 2683 |
|
| 2684 |
# Connect the button to the display function with updated outputs
|
| 2685 |
submit_btn.click(
|
| 2686 |
fn=display_results,
|
| 2687 |
inputs=[audio_input],
|
| 2688 |
-
outputs=[genre_output, emotion_output, ast_output, lyrics_output,
|
| 2689 |
)
|
| 2690 |
|
| 2691 |
# Enhanced explanation of how the system works
|
|
@@ -2703,24 +3654,29 @@ with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
|
|
| 2703 |
- Strong and weak beats
|
| 2704 |
- Natural phrase boundaries
|
| 2705 |
- Time signature and tempo variations
|
|
|
|
|
|
|
|
|
|
| 2706 |
|
| 2707 |
-
|
| 2708 |
- Beat stress patterns (strong, medium, weak)
|
| 2709 |
- Appropriate syllable counts based on tempo
|
| 2710 |
- Genre-specific rhythmic qualities
|
|
|
|
| 2711 |
|
| 2712 |
-
|
| 2713 |
- Match the emotional quality of the music
|
| 2714 |
-
- Follow the precise syllable templates
|
| 2715 |
- Align stressed syllables with strong beats
|
| 2716 |
- Maintain genre-appropriate style and themes
|
| 2717 |
|
| 2718 |
-
|
| 2719 |
- Syllable count accuracy
|
| 2720 |
- Stress alignment with strong beats
|
| 2721 |
- Word stress patterns
|
|
|
|
| 2722 |
|
| 2723 |
-
|
| 2724 |
|
| 2725 |
This multi-step process creates lyrics that feel naturally connected to the music, as if they were written specifically for it.
|
| 2726 |
""")
|
|
|
|
| 19 |
load_audio,
|
| 20 |
extract_audio_duration,
|
| 21 |
extract_mfcc_features,
|
|
|
|
| 22 |
format_genre_results,
|
| 23 |
+
ensure_cuda_availability
|
|
|
|
| 24 |
)
|
| 25 |
from emotionanalysis import MusicAnalyzer
|
| 26 |
import librosa
|
|
|
|
| 104 |
# Initialize music emotion analyzer
|
| 105 |
music_analyzer = MusicAnalyzer()
|
| 106 |
|
| 107 |
+
# New global function moved outside of verify_flexible_syllable_counts
|
| 108 |
+
@functools.lru_cache(maxsize=512)
|
| 109 |
+
def cached_phones_for_word(word):
|
| 110 |
+
"""Get word pronunciations with caching for better performance."""
|
| 111 |
+
return pronouncing.phones_for_word(word)
|
| 112 |
+
|
| 113 |
+
@functools.lru_cache(maxsize=512)
|
| 114 |
+
def count_syllables_for_word(word):
|
| 115 |
+
"""Count syllables in a single word with caching for performance."""
|
| 116 |
+
# Try using pronouncing library first
|
| 117 |
+
pronunciations = cached_phones_for_word(word.lower())
|
| 118 |
+
if pronunciations:
|
| 119 |
+
return pronouncing.syllable_count(pronunciations[0])
|
| 120 |
+
|
| 121 |
+
# Fallback method for words not in the pronouncing dictionary
|
| 122 |
+
vowels = "aeiouy"
|
| 123 |
+
word = word.lower()
|
| 124 |
+
count = 0
|
| 125 |
+
prev_is_vowel = False
|
| 126 |
+
|
| 127 |
+
for char in word:
|
| 128 |
+
is_vowel = char in vowels
|
| 129 |
+
if is_vowel and not prev_is_vowel:
|
| 130 |
+
count += 1
|
| 131 |
+
prev_is_vowel = is_vowel
|
| 132 |
+
|
| 133 |
+
# Handle special cases
|
| 134 |
+
if word.endswith('e') and not word.endswith('le'):
|
| 135 |
+
count -= 1
|
| 136 |
+
if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
|
| 137 |
+
count += 1
|
| 138 |
+
if count == 0:
|
| 139 |
+
count = 1
|
| 140 |
+
|
| 141 |
+
return count
|
| 142 |
+
|
| 143 |
+
@functools.lru_cache(maxsize=512)
|
| 144 |
+
def get_word_stress(word):
|
| 145 |
+
"""Get the stress pattern for a word with improved fallback handling."""
|
| 146 |
+
pronunciations = cached_phones_for_word(word.lower())
|
| 147 |
+
if pronunciations:
|
| 148 |
+
return pronouncing.stresses(pronunciations[0])
|
| 149 |
+
|
| 150 |
+
# Enhanced fallback for words not in the dictionary
|
| 151 |
+
syllables = count_syllables_for_word(word)
|
| 152 |
+
|
| 153 |
+
# Common English stress patterns by word length
|
| 154 |
+
if syllables == 1:
|
| 155 |
+
return "1" # Single syllable words are stressed
|
| 156 |
+
elif syllables == 2:
|
| 157 |
+
# Most 2-syllable nouns and adjectives stress first syllable
|
| 158 |
+
# Common endings that indicate second-syllable stress
|
| 159 |
+
second_syllable_stress = ["ing", "er", "or", "ize", "ise", "ate", "ect", "end", "ure"]
|
| 160 |
+
if any(word.endswith(ending) for ending in second_syllable_stress):
|
| 161 |
+
return "01"
|
| 162 |
+
else:
|
| 163 |
+
return "10" # Default for 2-syllable words
|
| 164 |
+
elif syllables == 3:
|
| 165 |
+
# Common endings for specific stress patterns in 3-syllable words
|
| 166 |
+
if any(word.endswith(ending) for ending in ["ity", "ety", "ify", "ogy", "graphy"]):
|
| 167 |
+
return "100" # First syllable stress
|
| 168 |
+
elif any(word.endswith(ending) for ending in ["ation", "ious", "itis"]):
|
| 169 |
+
return "010" # Middle syllable stress
|
| 170 |
+
else:
|
| 171 |
+
return "100" # Default for 3-syllable words
|
| 172 |
+
else:
|
| 173 |
+
# For longer words, use common English patterns
|
| 174 |
+
return "1" + "0" * (syllables - 1)
|
| 175 |
+
|
| 176 |
# New function: Count syllables in text
|
| 177 |
def count_syllables(text):
|
| 178 |
"""Count syllables in a given text using the pronouncing library."""
|
|
|
|
| 180 |
syllable_count = 0
|
| 181 |
|
| 182 |
for word in words:
|
| 183 |
+
syllable_count += count_syllables_for_word(word)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
return syllable_count
|
| 186 |
|
|
|
|
| 347 |
onset_envelope=combined_onset,
|
| 348 |
sr=sr,
|
| 349 |
tightness=100,
|
| 350 |
+
start_bpm=60 # Lower starting BPM helps find different time signatures
|
|
|
|
| 351 |
)
|
| 352 |
tempo_candidates.append(tempo2)
|
| 353 |
beat_candidates.append(beats2)
|
|
|
|
| 529 |
"phrases": phrases
|
| 530 |
}
|
| 531 |
|
| 532 |
+
def detect_beats_and_subbeats(y, sr, subdivision=4):
|
| 533 |
+
"""
|
| 534 |
+
Detect main beats and interpolate subbeats between consecutive beats.
|
| 535 |
+
|
| 536 |
+
Parameters:
|
| 537 |
+
y: Audio time series
|
| 538 |
+
sr: Sample rate
|
| 539 |
+
subdivision: Number of subdivisions between beats (default: 4 for quarter beats)
|
| 540 |
+
|
| 541 |
+
Returns:
|
| 542 |
+
Dictionary containing beat times, subbeat times, and tempo information
|
| 543 |
+
"""
|
| 544 |
+
# Detect main beats using librosa
|
| 545 |
+
try:
|
| 546 |
+
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
|
| 547 |
+
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
|
| 548 |
+
|
| 549 |
+
# Convert numpy values to native Python types
|
| 550 |
+
if isinstance(tempo, np.ndarray) or isinstance(tempo, np.number):
|
| 551 |
+
tempo = float(tempo)
|
| 552 |
+
|
| 553 |
+
# Convert beat_times to a list of floats
|
| 554 |
+
if isinstance(beat_times, np.ndarray):
|
| 555 |
+
beat_times = [float(t) for t in beat_times]
|
| 556 |
+
except Exception as e:
|
| 557 |
+
print(f"Error in beat detection: {e}")
|
| 558 |
+
# Default fallbacks
|
| 559 |
+
tempo = 120.0
|
| 560 |
+
beat_times = []
|
| 561 |
+
|
| 562 |
+
# Create subbeats by interpolating between main beats
|
| 563 |
+
subbeat_times = []
|
| 564 |
+
|
| 565 |
+
# Early return if no beats detected
|
| 566 |
+
if not beat_times or len(beat_times) < 2:
|
| 567 |
+
return {
|
| 568 |
+
"tempo": float(tempo) if tempo is not None else 120.0,
|
| 569 |
+
"beat_times": beat_times,
|
| 570 |
+
"subbeat_times": []
|
| 571 |
+
}
|
| 572 |
+
|
| 573 |
+
for i in range(len(beat_times) - 1):
|
| 574 |
+
# Get current and next beat time
|
| 575 |
+
try:
|
| 576 |
+
current_beat = float(beat_times[i])
|
| 577 |
+
next_beat = float(beat_times[i + 1])
|
| 578 |
+
except (IndexError, ValueError, TypeError):
|
| 579 |
+
continue
|
| 580 |
+
|
| 581 |
+
# Calculate time interval between beats
|
| 582 |
+
interval = (next_beat - current_beat) / subdivision
|
| 583 |
+
|
| 584 |
+
# Add the main beat
|
| 585 |
+
subbeat_times.append({
|
| 586 |
+
"time": float(current_beat),
|
| 587 |
+
"type": "main",
|
| 588 |
+
"strength": 1.0,
|
| 589 |
+
"beat_index": i
|
| 590 |
+
})
|
| 591 |
+
|
| 592 |
+
# Add subbeats
|
| 593 |
+
for j in range(1, subdivision):
|
| 594 |
+
subbeat_time = current_beat + j * interval
|
| 595 |
+
# Calculate strength based on position
|
| 596 |
+
# For 4/4 time, beat 3 is stronger than beats 2 and 4
|
| 597 |
+
if j == subdivision // 2 and subdivision == 4:
|
| 598 |
+
strength = 0.8 # Stronger subbeat (e.g., beat 3 in 4/4)
|
| 599 |
+
else:
|
| 600 |
+
strength = 0.5 # Weaker subbeat
|
| 601 |
+
|
| 602 |
+
subbeat_times.append({
|
| 603 |
+
"time": float(subbeat_time),
|
| 604 |
+
"type": "sub",
|
| 605 |
+
"strength": float(strength),
|
| 606 |
+
"beat_index": i,
|
| 607 |
+
"subbeat_index": j
|
| 608 |
+
})
|
| 609 |
+
|
| 610 |
+
# Add the last main beat
|
| 611 |
+
if beat_times:
|
| 612 |
+
try:
|
| 613 |
+
subbeat_times.append({
|
| 614 |
+
"time": float(beat_times[-1]),
|
| 615 |
+
"type": "main",
|
| 616 |
+
"strength": 1.0,
|
| 617 |
+
"beat_index": len(beat_times) - 1
|
| 618 |
+
})
|
| 619 |
+
except (ValueError, TypeError):
|
| 620 |
+
# Skip if conversion fails
|
| 621 |
+
pass
|
| 622 |
+
|
| 623 |
+
return {
|
| 624 |
+
"tempo": float(tempo) if tempo is not None else 120.0,
|
| 625 |
+
"beat_times": beat_times,
|
| 626 |
+
"subbeat_times": subbeat_times
|
| 627 |
+
}
|
| 628 |
+
|
| 629 |
+
def map_beats_to_seconds(subbeat_times, duration, fps=1.0):
|
| 630 |
+
"""
|
| 631 |
+
Map beats and subbeats to second-level intervals.
|
| 632 |
+
|
| 633 |
+
Parameters:
|
| 634 |
+
subbeat_times: List of dictionaries containing beat and subbeat information
|
| 635 |
+
duration: Total duration of the audio in seconds
|
| 636 |
+
fps: Frames per second (default: 1.0 for one-second intervals)
|
| 637 |
+
|
| 638 |
+
Returns:
|
| 639 |
+
List of dictionaries, each containing beats within a time window
|
| 640 |
+
"""
|
| 641 |
+
# Safety check for input parameters
|
| 642 |
+
if not isinstance(subbeat_times, list):
|
| 643 |
+
print("Warning: subbeat_times is not a list")
|
| 644 |
+
subbeat_times = []
|
| 645 |
+
|
| 646 |
+
try:
|
| 647 |
+
duration = float(duration)
|
| 648 |
+
except (ValueError, TypeError):
|
| 649 |
+
print("Warning: duration is not convertible to float, defaulting to 30")
|
| 650 |
+
duration = 30.0
|
| 651 |
+
|
| 652 |
+
# Calculate number of time windows
|
| 653 |
+
num_windows = int(duration * fps) + 1
|
| 654 |
+
|
| 655 |
+
# Initialize time windows
|
| 656 |
+
time_windows = []
|
| 657 |
+
|
| 658 |
+
for i in range(num_windows):
|
| 659 |
+
# Calculate window boundaries
|
| 660 |
+
start_time = i / fps
|
| 661 |
+
end_time = (i + 1) / fps
|
| 662 |
+
|
| 663 |
+
# Find beats and subbeats within this window
|
| 664 |
+
window_beats = []
|
| 665 |
+
|
| 666 |
+
for beat in subbeat_times:
|
| 667 |
+
# Safety check for beat object
|
| 668 |
+
if not isinstance(beat, dict):
|
| 669 |
+
continue
|
| 670 |
+
|
| 671 |
+
# Safely access beat time
|
| 672 |
+
try:
|
| 673 |
+
beat_time = float(beat.get("time", 0))
|
| 674 |
+
except (ValueError, TypeError):
|
| 675 |
+
continue
|
| 676 |
+
|
| 677 |
+
if start_time <= beat_time < end_time:
|
| 678 |
+
# Safely extract beat properties with defaults
|
| 679 |
+
beat_type = beat.get("type", "sub")
|
| 680 |
+
if not isinstance(beat_type, str):
|
| 681 |
+
beat_type = "sub"
|
| 682 |
+
|
| 683 |
+
# Safely handle strength
|
| 684 |
+
try:
|
| 685 |
+
strength = float(beat.get("strength", 0.5))
|
| 686 |
+
except (ValueError, TypeError):
|
| 687 |
+
strength = 0.5
|
| 688 |
+
|
| 689 |
+
# Add beat to this window
|
| 690 |
+
window_beats.append({
|
| 691 |
+
"time": beat_time,
|
| 692 |
+
"type": beat_type,
|
| 693 |
+
"strength": strength,
|
| 694 |
+
"relative_pos": (beat_time - start_time) / (1/fps) # Position within window (0-1)
|
| 695 |
+
})
|
| 696 |
+
|
| 697 |
+
# Add window to list
|
| 698 |
+
time_windows.append({
|
| 699 |
+
"second": i,
|
| 700 |
+
"start": start_time,
|
| 701 |
+
"end": end_time,
|
| 702 |
+
"beats": window_beats
|
| 703 |
+
})
|
| 704 |
+
|
| 705 |
+
return time_windows
|
| 706 |
+
|
| 707 |
+
def create_second_level_templates(sec_map, tempo, genre=None):
|
| 708 |
+
"""
|
| 709 |
+
Create syllable templates for each second-level window.
|
| 710 |
+
|
| 711 |
+
Parameters:
|
| 712 |
+
sec_map: List of second-level time windows with beat information
|
| 713 |
+
tempo: Tempo in BPM
|
| 714 |
+
genre: Optional genre for genre-specific adjustments
|
| 715 |
+
|
| 716 |
+
Returns:
|
| 717 |
+
List of template strings, one for each second
|
| 718 |
+
"""
|
| 719 |
+
# Helper function to map tempo to base syllable count
|
| 720 |
+
def tempo_to_syllable_base(tempo):
|
| 721 |
+
"""Continuous function mapping tempo to syllable base count"""
|
| 722 |
+
# Sigmoid-like function that smoothly transitions between syllable counts
|
| 723 |
+
if tempo > 180:
|
| 724 |
+
return 1.0
|
| 725 |
+
elif tempo > 140:
|
| 726 |
+
return 1.0 + (180 - tempo) * 0.02 # Gradual increase 1.0 → 1.8
|
| 727 |
+
elif tempo > 100:
|
| 728 |
+
return 1.8 + (140 - tempo) * 0.01 # Gradual increase 1.8 → 2.2
|
| 729 |
+
elif tempo > 70:
|
| 730 |
+
return 2.2 + (100 - tempo) * 0.02 # Gradual increase 2.2 → 2.8
|
| 731 |
+
else:
|
| 732 |
+
return 2.8 + max(0, (70 - tempo) * 0.04) # Continue increasing for very slow tempos
|
| 733 |
+
|
| 734 |
+
# Calculate base syllable count from tempo
|
| 735 |
+
base_syllables = tempo_to_syllable_base(tempo)
|
| 736 |
+
|
| 737 |
+
# Apply genre-specific adjustments
|
| 738 |
+
genre_factor = 1.0
|
| 739 |
+
if genre:
|
| 740 |
+
genre_lower = genre.lower()
|
| 741 |
+
if any(term in genre_lower for term in ["rap", "hip hop", "hip-hop"]):
|
| 742 |
+
genre_factor = 1.4 # Much higher syllable density for rap
|
| 743 |
+
elif any(term in genre_lower for term in ["folk", "country", "ballad"]):
|
| 744 |
+
genre_factor = 0.8 # Lower density for folk styles
|
| 745 |
+
|
| 746 |
+
# Create templates for each second
|
| 747 |
+
templates = []
|
| 748 |
+
|
| 749 |
+
for window in sec_map:
|
| 750 |
+
beats = window["beats"]
|
| 751 |
+
|
| 752 |
+
# If no beats in this second, create a default template
|
| 753 |
+
if not beats:
|
| 754 |
+
templates.append("w(0.5):1")
|
| 755 |
+
continue
|
| 756 |
+
|
| 757 |
+
# Create beat patterns for this second
|
| 758 |
+
beat_patterns = []
|
| 759 |
+
|
| 760 |
+
for beat in beats:
|
| 761 |
+
# Ensure we're dealing with a dictionary and that it has a "strength" key
|
| 762 |
+
if not isinstance(beat, dict):
|
| 763 |
+
continue # Skip this beat if it's not a dictionary
|
| 764 |
+
|
| 765 |
+
# Safely get beat type and strength
|
| 766 |
+
if "type" not in beat or not isinstance(beat["type"], str):
|
| 767 |
+
beat_type = "w" # Default to weak if type is missing or not a string
|
| 768 |
+
else:
|
| 769 |
+
beat_type = "S" if beat["type"] == "main" else "m" if beat.get("strength", 0) >= 0.7 else "w"
|
| 770 |
+
|
| 771 |
+
# Safely get strength value with fallback
|
| 772 |
+
try:
|
| 773 |
+
strength = float(beat.get("strength", 0.5))
|
| 774 |
+
except (ValueError, TypeError):
|
| 775 |
+
strength = 0.5 # Default if conversion fails
|
| 776 |
+
|
| 777 |
+
# Adjust syllable count based on beat type and strength
|
| 778 |
+
if beat_type == "S":
|
| 779 |
+
syllable_factor = 1.2 # More syllables for strong beats
|
| 780 |
+
elif beat_type == "m":
|
| 781 |
+
syllable_factor = 1.0 # Normal for medium beats
|
| 782 |
+
else:
|
| 783 |
+
syllable_factor = 0.8 # Fewer for weak beats
|
| 784 |
+
|
| 785 |
+
# Calculate final syllable count
|
| 786 |
+
syllable_count = base_syllables * syllable_factor * genre_factor
|
| 787 |
+
|
| 788 |
+
# Round to half-syllable precision
|
| 789 |
+
syllable_count = round(syllable_count * 2) / 2
|
| 790 |
+
|
| 791 |
+
# Ensure reasonable limits
|
| 792 |
+
syllable_count = max(0.5, min(4, syllable_count))
|
| 793 |
+
|
| 794 |
+
# Format with embedded strength value
|
| 795 |
+
strength_pct = round(strength * 100) / 100
|
| 796 |
+
beat_patterns.append(f"{beat_type}({strength_pct}):{syllable_count}")
|
| 797 |
+
|
| 798 |
+
# Join patterns with dashes - ensure we have at least one pattern
|
| 799 |
+
if not beat_patterns:
|
| 800 |
+
templates.append("w(0.5):1") # Default if no valid patterns were created
|
| 801 |
+
else:
|
| 802 |
+
second_template = "-".join(beat_patterns)
|
| 803 |
+
templates.append(second_template)
|
| 804 |
+
|
| 805 |
+
return templates
|
| 806 |
+
|
| 807 |
def detect_sections(y, sr):
|
| 808 |
"""
|
| 809 |
Advanced detection of musical sections with adaptive segmentation and improved classification.
|
|
|
|
| 1085 |
import numpy as np
|
| 1086 |
from sklearn.cluster import KMeans
|
| 1087 |
|
| 1088 |
+
# Convert any numpy values to native Python types for safety - directly handle conversions
|
| 1089 |
+
# Process the dictionary to convert numpy values to Python native types
|
| 1090 |
+
if isinstance(beats_info, dict):
|
| 1091 |
+
processed_beats_info = {}
|
| 1092 |
+
for k, v in beats_info.items():
|
| 1093 |
+
if isinstance(v, np.ndarray):
|
| 1094 |
+
if v.size == 1:
|
| 1095 |
+
processed_beats_info[k] = float(v.item())
|
| 1096 |
+
else:
|
| 1097 |
+
processed_beats_info[k] = [float(x) if isinstance(x, np.number) else x for x in v]
|
| 1098 |
+
elif isinstance(v, np.number):
|
| 1099 |
+
processed_beats_info[k] = float(v)
|
| 1100 |
+
elif isinstance(v, list):
|
| 1101 |
+
processed_beats_info[k] = [float(x) if isinstance(x, np.number) else x for x in v]
|
| 1102 |
+
else:
|
| 1103 |
+
processed_beats_info[k] = v
|
| 1104 |
+
beats_info = processed_beats_info
|
| 1105 |
+
|
| 1106 |
# Extract basic beat information
|
| 1107 |
beat_times = beats_info.get("beat_times", [])
|
| 1108 |
beat_strengths = beats_info.get("beat_strengths", [1.0] * len(beat_times))
|
|
|
|
| 1504 |
|
| 1505 |
return "\n".join(output)
|
| 1506 |
|
| 1507 |
+
def verify_flexible_syllable_counts(lyrics, templates, second_level_templates=None):
|
| 1508 |
"""
|
| 1509 |
Enhanced verification of syllable counts and stress patterns with precise alignment analysis
|
| 1510 |
+
for both phrase-level and second-level templates.
|
| 1511 |
"""
|
| 1512 |
import re
|
| 1513 |
import pronouncing
|
|
|
|
| 1515 |
import functools
|
| 1516 |
from itertools import chain
|
| 1517 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1518 |
# Split lyrics into lines
|
| 1519 |
lines = [line.strip() for line in lyrics.split("\n") if line.strip()]
|
| 1520 |
|
|
|
|
| 1730 |
# If no matching template was found
|
| 1731 |
verification_notes.append(f"Line {i+1}: Unable to find matching template pattern")
|
| 1732 |
|
| 1733 |
+
# Add second-level verification if templates are provided
|
| 1734 |
+
if second_level_templates:
|
| 1735 |
+
verification_notes.append("\n=== SECOND-LEVEL VERIFICATION ===\n")
|
| 1736 |
+
|
| 1737 |
+
# Check each second against corresponding line
|
| 1738 |
+
for i, template in enumerate(second_level_templates):
|
| 1739 |
+
if i >= len(lines):
|
| 1740 |
+
break
|
| 1741 |
+
|
| 1742 |
+
line = lines[i]
|
| 1743 |
+
|
| 1744 |
+
# Skip section headers
|
| 1745 |
+
if line.startswith('[') and ']' in line:
|
| 1746 |
+
continue
|
| 1747 |
+
|
| 1748 |
+
actual_count = count_syllables(line)
|
| 1749 |
+
|
| 1750 |
+
# Parse template to get expected syllable count
|
| 1751 |
+
total_expected = 0
|
| 1752 |
+
beat_patterns = []
|
| 1753 |
+
|
| 1754 |
+
# Handle templates with beat patterns like "S(0.95):2-w(0.4):1"
|
| 1755 |
+
if isinstance(template, str) and "-" in template:
|
| 1756 |
+
for beat in template.split("-"):
|
| 1757 |
+
if ":" in beat:
|
| 1758 |
+
try:
|
| 1759 |
+
count_part = beat.split(":")[1]
|
| 1760 |
+
count = float(count_part)
|
| 1761 |
+
total_expected += count
|
| 1762 |
+
|
| 1763 |
+
# Extract beat type for alignment check
|
| 1764 |
+
beat_type = beat.split("(")[0] if "(" in beat else beat[0]
|
| 1765 |
+
beat_patterns.append((beat_type, count))
|
| 1766 |
+
except (IndexError, ValueError):
|
| 1767 |
+
pass
|
| 1768 |
+
|
| 1769 |
+
# Compare actual vs expected count
|
| 1770 |
+
if total_expected > 0:
|
| 1771 |
+
# Calculate adaptive threshold based on expected syllables
|
| 1772 |
+
expected_ratio = 0.2 # More strict at second level
|
| 1773 |
+
threshold = max(0.5, round(total_expected * expected_ratio))
|
| 1774 |
+
|
| 1775 |
+
difference = abs(actual_count - total_expected)
|
| 1776 |
+
|
| 1777 |
+
if difference > threshold:
|
| 1778 |
+
verification_notes.append(f"Second {i+1}: Expected {total_expected} syllables, got {actual_count}")
|
| 1779 |
+
total_mismatch_count += 1
|
| 1780 |
+
|
| 1781 |
+
# Check for stress misalignment in this second
|
| 1782 |
+
words = re.findall(r'\b[a-zA-Z]+\b', line.lower())
|
| 1783 |
+
word_analysis = []
|
| 1784 |
+
cumulative_syllables = 0
|
| 1785 |
+
|
| 1786 |
+
for word in words:
|
| 1787 |
+
syllable_count = count_syllables_for_word(word)
|
| 1788 |
+
stress_pattern = get_word_stress(word)
|
| 1789 |
+
|
| 1790 |
+
word_analysis.append({
|
| 1791 |
+
"word": word,
|
| 1792 |
+
"syllables": syllable_count,
|
| 1793 |
+
"stress_pattern": stress_pattern,
|
| 1794 |
+
"position": cumulative_syllables
|
| 1795 |
+
})
|
| 1796 |
+
|
| 1797 |
+
cumulative_syllables += syllable_count
|
| 1798 |
+
|
| 1799 |
+
# Check if stressed syllables align with strong beats
|
| 1800 |
+
if beat_patterns:
|
| 1801 |
+
strong_positions = []
|
| 1802 |
+
current_pos = 0
|
| 1803 |
+
|
| 1804 |
+
for beat_type, count in beat_patterns:
|
| 1805 |
+
if beat_type == "S":
|
| 1806 |
+
strong_positions.append(current_pos)
|
| 1807 |
+
current_pos += count
|
| 1808 |
+
|
| 1809 |
+
# Look for misalignments
|
| 1810 |
+
for pos in strong_positions:
|
| 1811 |
+
for word_info in word_analysis:
|
| 1812 |
+
word_start = word_info["position"]
|
| 1813 |
+
word_end = word_start + word_info["syllables"]
|
| 1814 |
+
|
| 1815 |
+
if word_start <= pos < word_end:
|
| 1816 |
+
# Check if a stressed syllable falls on this position
|
| 1817 |
+
syllable_in_word = int(pos - word_start)
|
| 1818 |
+
stress = word_info["stress_pattern"]
|
| 1819 |
+
|
| 1820 |
+
if stress and syllable_in_word < len(stress) and stress[syllable_in_word] != '1':
|
| 1821 |
+
verification_notes.append(f" → In second {i+1}, '{word_info['word']}' has unstressed syllable on strong beat")
|
| 1822 |
+
break
|
| 1823 |
+
|
| 1824 |
# Only add detailed analysis if we have rhythm mismatches
|
| 1825 |
if verification_notes:
|
| 1826 |
lyrics += "\n\n[Note: Potential rhythm mismatches detected in these lines:]\n"
|
|
|
|
| 2018 |
Returns:
|
| 2019 |
Generated lyrics aligned with the rhythm patterns of the music
|
| 2020 |
"""
|
| 2021 |
+
# Ensure emotion_results is a dictionary with the expected structure
|
| 2022 |
+
if not isinstance(emotion_results, dict):
|
| 2023 |
+
emotion_results = {
|
| 2024 |
+
"emotion_analysis": {"primary_emotion": "Unknown"},
|
| 2025 |
+
"theme_analysis": {"primary_theme": "Unknown"},
|
| 2026 |
+
"rhythm_analysis": {"tempo": 0},
|
| 2027 |
+
"tonal_analysis": {"key": "Unknown", "mode": ""},
|
| 2028 |
+
"summary": {"tempo": 0, "key": "Unknown", "mode": "", "primary_emotion": "Unknown", "primary_theme": "Unknown"}
|
| 2029 |
+
}
|
| 2030 |
+
|
| 2031 |
+
# Extract emotion and theme data with safe defaults
|
| 2032 |
+
primary_emotion = emotion_results.get("emotion_analysis", {}).get("primary_emotion", "Unknown")
|
| 2033 |
+
primary_theme = emotion_results.get("theme_analysis", {}).get("primary_theme", "Unknown")
|
| 2034 |
+
|
| 2035 |
+
# Extract numeric values safely with fallbacks
|
| 2036 |
+
try:
|
| 2037 |
+
tempo = float(emotion_results.get("rhythm_analysis", {}).get("tempo", 0.0))
|
| 2038 |
+
except (ValueError, TypeError):
|
| 2039 |
+
tempo = 0.0
|
| 2040 |
+
|
| 2041 |
+
key = emotion_results.get("tonal_analysis", {}).get("key", "Unknown")
|
| 2042 |
+
mode = emotion_results.get("tonal_analysis", {}).get("mode", "")
|
| 2043 |
# Extract emotion and theme data from analysis results
|
| 2044 |
primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
|
| 2045 |
primary_theme = emotion_results["theme_analysis"]["primary_theme"]
|
|
|
|
| 2062 |
structure_visualization += f"Song Duration: {duration:.1f} seconds\n"
|
| 2063 |
structure_visualization += f"Tempo: {tempo:.1f} BPM\n\n"
|
| 2064 |
|
| 2065 |
+
# Add second-level template guidance if available
|
| 2066 |
+
if song_structure and "second_level" in song_structure and song_structure["second_level"]:
|
| 2067 |
+
second_level_templates = song_structure["second_level"]["templates"]
|
| 2068 |
+
|
| 2069 |
+
# Create second-level guidance
|
| 2070 |
+
second_level_guidance = "\nSECOND-BY-SECOND RHYTHM INSTRUCTIONS:\n"
|
| 2071 |
+
second_level_guidance += "Each line below corresponds to ONE SECOND of audio. Follow these rhythm patterns EXACTLY:\n\n"
|
| 2072 |
+
|
| 2073 |
+
# Format each second's template
|
| 2074 |
+
formatted_second_templates = []
|
| 2075 |
+
for i, template in enumerate(second_level_templates):
|
| 2076 |
+
if i < min(60, len(second_level_templates)): # Limit to 60 seconds to avoid overwhelming the LLM
|
| 2077 |
+
formatted_template = format_syllable_templates_for_prompt(template, arrow="→", line_wrap=0)
|
| 2078 |
+
formatted_second_templates.append(f"Second {i+1}: {formatted_template}")
|
| 2079 |
+
|
| 2080 |
+
second_level_guidance += "\n".join(formatted_second_templates)
|
| 2081 |
+
|
| 2082 |
+
# Add critical instructions for second-level alignment
|
| 2083 |
+
second_level_guidance += "\n\nCRITICAL: Create ONE LINE of lyrics for EACH SECOND, following the exact rhythm pattern."
|
| 2084 |
+
second_level_guidance += "\nIf a second has no beats, use it for a breath or pause in the lyrics."
|
| 2085 |
+
second_level_guidance += "\nThe first line of your lyrics MUST match Second 1, the second line matches Second 2, and so on."
|
| 2086 |
+
|
| 2087 |
+
# Add to syllable guidance
|
| 2088 |
+
syllable_guidance = second_level_guidance
|
| 2089 |
+
|
| 2090 |
+
# Store templates for verification
|
| 2091 |
+
templates_for_verification = second_level_templates
|
| 2092 |
+
|
| 2093 |
+
elif song_structure:
|
| 2094 |
# Try to use flexible structure if available
|
| 2095 |
if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
|
| 2096 |
flexible = song_structure["flexible_structure"]
|
|
|
|
| 2390 |
# Store the syllable guidance for later use
|
| 2391 |
syllable_guidance_text = syllable_guidance
|
| 2392 |
|
| 2393 |
+
# Determine if we should use traditional sections or second-level alignment
|
| 2394 |
+
use_sections = True
|
| 2395 |
+
use_second_level = False
|
| 2396 |
+
|
| 2397 |
+
if song_structure and "second_level" in song_structure and song_structure["second_level"]:
|
| 2398 |
+
use_second_level = True
|
| 2399 |
+
# If we have second-level templates, prioritize those over traditional sections
|
| 2400 |
+
if len(song_structure["second_level"]["templates"]) > 0:
|
| 2401 |
+
use_sections = False
|
| 2402 |
+
elif song_structure and "flexible_structure" in song_structure and song_structure["flexible_structure"]:
|
| 2403 |
# If we have more than 4 segments, it's likely not a traditional song structure
|
| 2404 |
if "segments" in song_structure["flexible_structure"]:
|
| 2405 |
segments = song_structure["flexible_structure"]["segments"]
|
|
|
|
| 2407 |
use_sections = False
|
| 2408 |
|
| 2409 |
# Create enhanced prompt with better rhythm alignment instructions
|
| 2410 |
+
if use_second_level:
|
| 2411 |
+
# Second-level approach with per-second alignment
|
| 2412 |
+
content = f"""
|
| 2413 |
+
You are a talented songwriter who specializes in {genre} music.
|
| 2414 |
+
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.
|
| 2415 |
+
|
| 2416 |
+
IMPORTANT: DO NOT include any thinking process, explanations, or analysis before the lyrics. Start directly with the song lyrics.
|
| 2417 |
+
|
| 2418 |
+
Music analysis has detected the following qualities in the music:
|
| 2419 |
+
- Tempo: {tempo:.1f} BPM
|
| 2420 |
+
- Key: {key} {mode}
|
| 2421 |
+
- Primary emotion: {primary_emotion}
|
| 2422 |
+
- Primary theme: {primary_theme}
|
| 2423 |
+
|
| 2424 |
+
{syllable_guidance}
|
| 2425 |
+
|
| 2426 |
+
CRITICAL INSTRUCTIONS FOR SECOND-LEVEL RHYTHM ALIGNMENT:
|
| 2427 |
+
1. Each line of lyrics MUST correspond to ONE SECOND of audio.
|
| 2428 |
+
2. The first line of your lyrics MUST match Second 1, the second line matches Second 2, etc.
|
| 2429 |
+
3. STRESSED syllables MUST fall on STRONG beats (marked with STRONG in the pattern)
|
| 2430 |
+
4. Natural word stress patterns must match the beat strength (strong words on strong beats)
|
| 2431 |
+
5. For seconds with no beats, use a pause, breath, or continue a phrase from previous line
|
| 2432 |
+
6. Pay attention to strength values in the pattern (higher values need stronger emphasis)
|
| 2433 |
+
7. For half-syllable positions (like S1.5 or m2.5), use short, quick syllables
|
| 2434 |
+
|
| 2435 |
+
The lyrics should:
|
| 2436 |
+
- Perfectly capture the essence and style of {genre} music
|
| 2437 |
+
- Express the {primary_emotion} emotion and {primary_theme} theme
|
| 2438 |
+
- Match EXACTLY with the second-by-second rhythm patterns provided above
|
| 2439 |
+
- Be completely original
|
| 2440 |
+
- Create a coherent song that flows naturally despite the precise timing requirements
|
| 2441 |
+
|
| 2442 |
+
IMPORTANT: Start immediately with the lyrics. DO NOT include any thinking process, analysis, or explanation before presenting the lyrics.
|
| 2443 |
+
|
| 2444 |
+
IMPORTANT: Your generated lyrics must be followed by a section titled "[RHYTHM_ANALYSIS_SECTION]"
|
| 2445 |
+
where you analyze how well the lyrics align with the musical rhythm. This section MUST appear
|
| 2446 |
+
even if there are no rhythm issues. Include the following in your analysis:
|
| 2447 |
+
1. How well each line matches its corresponding second's rhythm pattern
|
| 2448 |
+
2. Where stressed syllables align with strong beats
|
| 2449 |
+
3. Any potential misalignments or improvements
|
| 2450 |
+
|
| 2451 |
+
Your lyrics:
|
| 2452 |
+
"""
|
| 2453 |
+
elif use_sections:
|
| 2454 |
# Traditional approach with sections
|
| 2455 |
content = f"""
|
| 2456 |
You are a talented songwriter who specializes in {genre} music.
|
| 2457 |
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.
|
| 2458 |
|
| 2459 |
+
IMPORTANT: DO NOT include any thinking process, explanations, or analysis before the lyrics. Start directly with the song lyrics.
|
| 2460 |
+
|
| 2461 |
Music analysis has detected the following qualities in the music:
|
| 2462 |
- Tempo: {tempo:.1f} BPM
|
| 2463 |
- Key: {key} {mode}
|
|
|
|
| 2475 |
6. Pay attention to strength values in the pattern (higher values like 0.95 need stronger emphasis)
|
| 2476 |
7. For half-syllable positions (like S1.5 or m2.5), use short, quick syllables or words with weak vowels
|
| 2477 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2478 |
The lyrics should:
|
| 2479 |
- Perfectly capture the essence and style of {genre} music
|
| 2480 |
- Express the {primary_emotion} emotion and {primary_theme} theme
|
|
|
|
| 2482 |
- Be completely original
|
| 2483 |
- Match the song duration of {duration:.1f} seconds
|
| 2484 |
|
| 2485 |
+
IMPORTANT: Start immediately with the lyrics. DO NOT include any thinking process, analysis, or explanation before presenting the lyrics.
|
| 2486 |
+
|
| 2487 |
IMPORTANT: Your generated lyrics must be followed by a section titled "[RHYTHM_ANALYSIS_SECTION]"
|
| 2488 |
where you analyze how well the lyrics align with the musical rhythm. This section MUST appear
|
| 2489 |
even if there are no rhythm issues. Include the following in your analysis:
|
|
|
|
| 2499 |
You are a talented songwriter who specializes in {genre} music.
|
| 2500 |
Write original lyrics that match the rhythm of a {genre} music segment that is {duration:.1f} seconds long.
|
| 2501 |
|
| 2502 |
+
IMPORTANT: DO NOT include any thinking process, explanations, or analysis before the lyrics. Start directly with the song lyrics.
|
| 2503 |
+
|
| 2504 |
Music analysis has detected the following qualities:
|
| 2505 |
- Tempo: {tempo:.1f} BPM
|
| 2506 |
- Key: {key} {mode}
|
|
|
|
| 2518 |
6. Pay attention to strength values in the pattern (higher values like 0.95 need stronger emphasis)
|
| 2519 |
7. For half-syllable positions (like S1.5 or m2.5), use short, quick syllables or words with weak vowels
|
| 2520 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2521 |
The lyrics should:
|
| 2522 |
- Perfectly capture the essence and style of {genre} music
|
| 2523 |
- Express the {primary_emotion} emotion and {primary_theme} theme
|
|
|
|
| 2528 |
Include any section labels like [Verse] or [Chorus] as indicated in the rhythm patterns above.
|
| 2529 |
Each line of lyrics must follow the corresponding segment's rhythm pattern EXACTLY.
|
| 2530 |
|
| 2531 |
+
IMPORTANT: Start immediately with the lyrics. DO NOT include any thinking process, analysis, or explanation before presenting the lyrics.
|
| 2532 |
+
|
| 2533 |
IMPORTANT: Your generated lyrics must be followed by a section titled "[RHYTHM_ANALYSIS_SECTION]"
|
| 2534 |
where you analyze how well the lyrics align with the musical rhythm. This section MUST appear
|
| 2535 |
even if there are no rhythm issues. Include the following in your analysis:
|
|
|
|
| 2542 |
|
| 2543 |
# Format as a chat message for the LLM
|
| 2544 |
messages = [
|
| 2545 |
+
{"role": "system", "content": "You are a professional songwriter. Create lyrics that match the specified rhythm patterns exactly. Start with the lyrics immediately without any explanation or thinking. Be concise and direct."},
|
| 2546 |
{"role": "user", "content": content}
|
| 2547 |
]
|
| 2548 |
|
|
|
|
| 2559 |
# Configure generation parameters based on model capability
|
| 2560 |
generation_params = {
|
| 2561 |
"do_sample": True,
|
| 2562 |
+
"temperature": 0.5, # Lower for more consistent and direct output
|
| 2563 |
+
"top_p": 0.85, # Slightly lower for more predictable responses
|
| 2564 |
+
"top_k": 50,
|
| 2565 |
"repetition_penalty": 1.2,
|
| 2566 |
+
"max_new_tokens": 2048,
|
| 2567 |
+
"num_return_sequences": 1
|
| 2568 |
}
|
| 2569 |
|
| 2570 |
+
# Add specific stop sequences to prevent excessive explanation
|
| 2571 |
+
if hasattr(llm_model.generation_config, "stopping_criteria"):
|
| 2572 |
+
thinking_stops = ["Let me think", "First, I need to", "Let's analyze", "I'll approach this", "Step 1:", "To start,"]
|
| 2573 |
+
for stop in thinking_stops:
|
| 2574 |
+
if stop not in llm_model.generation_config.stopping_criteria:
|
| 2575 |
+
llm_model.generation_config.stopping_criteria.append(stop)
|
| 2576 |
+
|
| 2577 |
# Generate output
|
| 2578 |
generated_ids = llm_model.generate(
|
| 2579 |
**model_inputs,
|
|
|
|
| 2583 |
# Extract output tokens
|
| 2584 |
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
| 2585 |
|
| 2586 |
+
# Get the raw output and strip any thinking process
|
| 2587 |
lyrics = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
| 2588 |
|
| 2589 |
+
# Enhanced thinking process removal - handle multiple formats
|
| 2590 |
+
# First check for standard thinking tags
|
| 2591 |
if "<thinking>" in lyrics and "</thinking>" in lyrics:
|
| 2592 |
lyrics = lyrics.split("</thinking>")[1].strip()
|
| 2593 |
|
| 2594 |
+
# Check for alternative thinking indicators with improved detection
|
| 2595 |
+
thinking_markers = [
|
| 2596 |
+
"<think>", "</think>",
|
| 2597 |
+
"[thinking]", "[/thinking]",
|
| 2598 |
+
"I'll think step by step:",
|
| 2599 |
+
"First, I need to understand",
|
| 2600 |
+
"Let me think about",
|
| 2601 |
+
"Let's tackle this query",
|
| 2602 |
+
"Okay, let's tackle this query",
|
| 2603 |
+
"First, I need to understand the requirements",
|
| 2604 |
+
"Looking at the rhythm patterns"
|
| 2605 |
+
]
|
| 2606 |
+
|
| 2607 |
+
# First try to find clear section breaks
|
| 2608 |
for marker in thinking_markers:
|
| 2609 |
if marker in lyrics:
|
| 2610 |
parts = lyrics.split(marker)
|
| 2611 |
if len(parts) > 1:
|
| 2612 |
lyrics = parts[-1].strip() # Take the last part after any thinking marker
|
| 2613 |
|
| 2614 |
+
# Look for long analytical sections followed by clear lyrics
|
| 2615 |
+
analytical_patterns = [
|
| 2616 |
+
"Let me analyze",
|
| 2617 |
+
"I need to understand",
|
| 2618 |
+
"The tempo is",
|
| 2619 |
+
"First, let's look at",
|
| 2620 |
+
"Wait, maybe",
|
| 2621 |
+
"Considering the emotional tone",
|
| 2622 |
+
"Starting with the first line",
|
| 2623 |
+
"Let me check the examples"
|
| 2624 |
+
]
|
| 2625 |
+
|
| 2626 |
+
# Check if lyrics begin with any analytical patterns
|
| 2627 |
+
for pattern in analytical_patterns:
|
| 2628 |
+
if lyrics.startswith(pattern):
|
| 2629 |
+
# Try to find where the actual lyrics start - look for common lyrics markers
|
| 2630 |
+
lyrics_markers = [
|
| 2631 |
+
"\n\n[Verse",
|
| 2632 |
+
"\n\n[Chorus",
|
| 2633 |
+
"\n\nVerse",
|
| 2634 |
+
"\n\nChorus",
|
| 2635 |
+
"\n\n[Verse 1]",
|
| 2636 |
+
"\n\n[Intro]"
|
| 2637 |
+
]
|
| 2638 |
+
|
| 2639 |
+
for marker in lyrics_markers:
|
| 2640 |
+
if marker in lyrics:
|
| 2641 |
+
lyrics = lyrics[lyrics.index(marker):].strip()
|
| 2642 |
+
break
|
| 2643 |
+
|
| 2644 |
+
# One last effort to clean up - if the text is very long and contains obvious thinking
|
| 2645 |
+
# before getting to actual lyrics, try to find a clear starting point
|
| 2646 |
+
if len(lyrics.split()) > 100 and "\n\n" in lyrics:
|
| 2647 |
+
paragraphs = lyrics.split("\n\n")
|
| 2648 |
+
for i, paragraph in enumerate(paragraphs):
|
| 2649 |
+
# Look for typical song structure indicators in a paragraph
|
| 2650 |
+
if any(marker in paragraph for marker in ["[Verse", "[Chorus", "Verse 1", "Chorus:"]):
|
| 2651 |
+
lyrics = "\n\n".join(paragraphs[i:])
|
| 2652 |
+
break
|
| 2653 |
+
|
| 2654 |
+
# Clean up any remaining thinking artifacts at the beginning
|
| 2655 |
+
lines = lyrics.split('\n')
|
| 2656 |
+
clean_lines = []
|
| 2657 |
+
lyrics_started = False
|
| 2658 |
+
|
| 2659 |
+
for line in lines:
|
| 2660 |
+
# Skip initial commentary/thinking lines until we hit what looks like lyrics
|
| 2661 |
+
if not lyrics_started:
|
| 2662 |
+
if (line.strip().startswith('[') and ']' in line) or not any(thinking in line.lower() for thinking in ["i think", "let me", "maybe", "perhaps", "alternatively", "checking"]):
|
| 2663 |
+
lyrics_started = True
|
| 2664 |
+
|
| 2665 |
+
if lyrics_started:
|
| 2666 |
+
clean_lines.append(line)
|
| 2667 |
+
|
| 2668 |
+
# Only use the cleaning logic if we found some actual lyrics
|
| 2669 |
+
if clean_lines:
|
| 2670 |
+
lyrics = '\n'.join(clean_lines)
|
| 2671 |
+
|
| 2672 |
+
# Special handling for second-level templates
|
| 2673 |
+
second_level_verification = None
|
| 2674 |
+
if song_structure and "second_level" in song_structure and song_structure["second_level"]:
|
| 2675 |
+
second_level_verification = song_structure["second_level"]["templates"]
|
| 2676 |
+
|
| 2677 |
+
# Verify syllable counts with enhanced verification - pass second-level templates if available
|
| 2678 |
if templates_for_verification:
|
| 2679 |
+
# Convert any NumPy values to native types before verification - directly handle conversions
|
| 2680 |
+
# Simple conversion for basic templates (non-recursive)
|
| 2681 |
+
if isinstance(templates_for_verification, list):
|
| 2682 |
+
safe_templates = []
|
| 2683 |
+
for template in templates_for_verification:
|
| 2684 |
+
if isinstance(template, dict):
|
| 2685 |
+
processed_template = {}
|
| 2686 |
+
for k, v in template.items():
|
| 2687 |
+
if isinstance(v, np.ndarray):
|
| 2688 |
+
if v.size == 1:
|
| 2689 |
+
processed_template[k] = float(v.item())
|
| 2690 |
+
else:
|
| 2691 |
+
processed_template[k] = [float(x) if isinstance(x, np.number) else x for x in v]
|
| 2692 |
+
elif isinstance(v, np.number):
|
| 2693 |
+
processed_template[k] = float(v)
|
| 2694 |
+
else:
|
| 2695 |
+
processed_template[k] = v
|
| 2696 |
+
safe_templates.append(processed_template)
|
| 2697 |
+
else:
|
| 2698 |
+
safe_templates.append(template)
|
| 2699 |
+
else:
|
| 2700 |
+
safe_templates = templates_for_verification
|
| 2701 |
+
|
| 2702 |
+
verified_lyrics = verify_flexible_syllable_counts(lyrics, safe_templates, second_level_verification)
|
| 2703 |
|
| 2704 |
# Check if significant issues were detected
|
| 2705 |
if "[Note: Potential rhythm mismatches" in verified_lyrics and "Detailed Alignment Analysis" in verified_lyrics:
|
|
|
|
| 2760 |
refined_lyrics = llm_tokenizer.decode(refined_output_ids, skip_special_tokens=True).strip()
|
| 2761 |
|
| 2762 |
# Verify the refined lyrics
|
| 2763 |
+
refined_verified_lyrics = verify_flexible_syllable_counts(refined_lyrics, safe_templates, second_level_verification)
|
| 2764 |
|
| 2765 |
# Only use refined lyrics if they're better (fewer notes)
|
| 2766 |
if "[Note: Potential rhythm mismatches" not in refined_verified_lyrics:
|
|
|
|
| 2828 |
|
| 2829 |
if len(templates_for_verification) > 30:
|
| 2830 |
syllable_analysis += f"... and {len(templates_for_verification) - 30} more lines\n\n"
|
| 2831 |
+
|
| 2832 |
+
# Add second-level analysis if available
|
| 2833 |
+
if second_level_verification:
|
| 2834 |
+
syllable_analysis += "\nSecond-Level Template Analysis:\n"
|
| 2835 |
+
for i, template in enumerate(second_level_verification):
|
| 2836 |
+
if i < min(len(second_level_verification), 30): # Limit to 30 seconds
|
| 2837 |
+
syllable_analysis += f"Second {i+1}: {template}\n"
|
| 2838 |
+
|
| 2839 |
+
if len(second_level_verification) > 30:
|
| 2840 |
+
syllable_analysis += f"... and {len(second_level_verification) - 30} more seconds\n"
|
| 2841 |
|
| 2842 |
# Add structure visualization to syllable analysis
|
| 2843 |
syllable_analysis += "\n" + structure_visualization
|
|
|
|
| 2893 |
print(f"Error in genre classification: {str(e)}")
|
| 2894 |
return f"Error in genre classification: {str(e)}", None, ast_results
|
| 2895 |
|
| 2896 |
+
# Initialize default values
|
| 2897 |
+
ast_results = ast_results if ast_results else []
|
| 2898 |
+
song_structure = None
|
| 2899 |
+
emotion_results = {
|
| 2900 |
+
"emotion_analysis": {"primary_emotion": "Unknown"},
|
| 2901 |
+
"theme_analysis": {"primary_theme": "Unknown"},
|
| 2902 |
+
"rhythm_analysis": {"tempo": 0},
|
| 2903 |
+
"tonal_analysis": {"key": "Unknown", "mode": ""},
|
| 2904 |
+
"summary": {"tempo": 0, "key": "Unknown", "mode": "", "primary_emotion": "Unknown", "primary_theme": "Unknown"}
|
| 2905 |
+
}
|
| 2906 |
+
|
| 2907 |
print("Step 4/5: Analyzing music emotions, themes, and structure...")
|
| 2908 |
# Analyze music emotions and themes
|
| 2909 |
try:
|
| 2910 |
emotion_results = music_analyzer.analyze_music(audio_file)
|
| 2911 |
except Exception as e:
|
| 2912 |
print(f"Error in emotion analysis: {str(e)}")
|
| 2913 |
+
# Continue with default emotion_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2914 |
|
| 2915 |
# Calculate detailed song structure for better lyrics alignment
|
| 2916 |
try:
|
| 2917 |
+
# Load audio data
|
| 2918 |
y, sr = load_audio(audio_file, SAMPLE_RATE)
|
| 2919 |
|
| 2920 |
# Analyze beats and phrases for music-aligned lyrics
|
|
|
|
| 2995 |
"end": segment_end
|
| 2996 |
})
|
| 2997 |
|
| 2998 |
+
# Create flexible structure with the segments
|
| 2999 |
flexible_structure = {
|
| 3000 |
"beats": beats_info,
|
| 3001 |
"segments": segments
|
| 3002 |
}
|
| 3003 |
|
| 3004 |
+
# Create song structure object
|
| 3005 |
song_structure = {
|
| 3006 |
"beats": beats_info,
|
| 3007 |
"sections": sections_info,
|
| 3008 |
+
"flexible_structure": flexible_structure,
|
| 3009 |
+
"syllables": []
|
| 3010 |
}
|
| 3011 |
|
| 3012 |
# Add syllable counts to each section
|
|
|
|
| 3013 |
for section in sections_info:
|
| 3014 |
# Create syllable templates for sections
|
| 3015 |
section_beats_info = {
|
|
|
|
| 3045 |
|
| 3046 |
song_structure["syllables"].append(section_info)
|
| 3047 |
|
| 3048 |
+
# Add second-level beat analysis
|
| 3049 |
+
try:
|
| 3050 |
+
# Get enhanced beat information with subbeats
|
| 3051 |
+
subbeat_info = detect_beats_and_subbeats(y, sr, subdivision=4)
|
| 3052 |
+
|
| 3053 |
+
# Map beats to second-level windows
|
| 3054 |
+
sec_map = map_beats_to_seconds(
|
| 3055 |
+
subbeat_info["subbeat_times"],
|
| 3056 |
+
audio_data["duration"]
|
| 3057 |
+
)
|
| 3058 |
+
|
| 3059 |
+
# Create second-level templates
|
| 3060 |
+
second_level_templates = create_second_level_templates(
|
| 3061 |
+
sec_map,
|
| 3062 |
+
subbeat_info["tempo"],
|
| 3063 |
+
top_genres[0][0] # Use top genre
|
| 3064 |
+
)
|
| 3065 |
+
|
| 3066 |
+
# Add to song structure
|
| 3067 |
+
song_structure["second_level"] = {
|
| 3068 |
+
"sec_map": sec_map,
|
| 3069 |
+
"templates": second_level_templates
|
| 3070 |
+
}
|
| 3071 |
+
|
| 3072 |
+
except Exception as e:
|
| 3073 |
+
print(f"Error in second-level beat analysis: {str(e)}")
|
| 3074 |
+
# Continue without second-level data
|
| 3075 |
+
|
| 3076 |
except Exception as e:
|
| 3077 |
print(f"Error analyzing song structure: {str(e)}")
|
| 3078 |
+
# Continue without song structure
|
|
|
|
| 3079 |
|
| 3080 |
print("Step 5/5: Generating rhythmically aligned lyrics...")
|
| 3081 |
# Generate lyrics based on top genre, emotion analysis, and song structure
|
|
|
|
| 3119 |
print(error_msg)
|
| 3120 |
return error_msg, None, []
|
| 3121 |
|
| 3122 |
+
def format_complete_beat_timeline(audio_file, lyrics=None):
|
| 3123 |
+
"""Creates a complete formatted timeline showing all beat timings and their syllable patterns without truncation"""
|
| 3124 |
+
if audio_file is None:
|
| 3125 |
+
return "Please upload an audio file to see beat timeline."
|
| 3126 |
+
|
| 3127 |
+
try:
|
| 3128 |
+
# Extract audio data
|
| 3129 |
+
y, sr = load_audio(audio_file, SAMPLE_RATE)
|
| 3130 |
+
|
| 3131 |
+
# Get beat information
|
| 3132 |
+
beats_info = detect_beats(y, sr)
|
| 3133 |
+
|
| 3134 |
+
def ensure_float(value):
|
| 3135 |
+
if isinstance(value, np.ndarray) or isinstance(v, np.number): # Should be 'value', not 'v'
|
| 3136 |
+
return float(value)
|
| 3137 |
+
return value
|
| 3138 |
+
|
| 3139 |
+
# Format the timeline
|
| 3140 |
+
timeline = "=== BEAT & SYLLABLE TIMELINE ===\n\n"
|
| 3141 |
+
# Convert tempo to float before formatting if it's a numpy array
|
| 3142 |
+
tempo = ensure_float(beats_info['tempo'])
|
| 3143 |
+
timeline += f"Tempo: {tempo:.1f} BPM\n"
|
| 3144 |
+
timeline += f"Time Signature: {beats_info['time_signature']}/4\n"
|
| 3145 |
+
timeline += f"Total Beats: {beats_info['beat_count']}\n\n"
|
| 3146 |
+
|
| 3147 |
+
# Create a table header
|
| 3148 |
+
timeline += "| Beat # | Time (s) | Beat Strength | Syllable Pattern |\n"
|
| 3149 |
+
timeline += "|--------|----------|--------------|------------------|\n"
|
| 3150 |
+
|
| 3151 |
+
# Add beat-by-beat information - show ALL beats
|
| 3152 |
+
for i, (time, strength) in enumerate(zip(beats_info['beat_times'], beats_info['beat_strengths'])):
|
| 3153 |
+
# Convert numpy values to Python float if needed
|
| 3154 |
+
time = ensure_float(time)
|
| 3155 |
+
strength = ensure_float(strength)
|
| 3156 |
+
|
| 3157 |
+
# Determine beat type based on strength
|
| 3158 |
+
if strength >= 0.8:
|
| 3159 |
+
beat_type = "STRONG"
|
| 3160 |
+
elif strength >= 0.5:
|
| 3161 |
+
beat_type = "medium"
|
| 3162 |
+
else:
|
| 3163 |
+
beat_type = "weak"
|
| 3164 |
+
|
| 3165 |
+
# Create beat pattern indicator
|
| 3166 |
+
if i % beats_info['time_signature'] == 0:
|
| 3167 |
+
pattern = "S" # Strong beat at start of measure
|
| 3168 |
+
elif i % beats_info['time_signature'] == beats_info['time_signature'] // 2 and beats_info['time_signature'] > 3:
|
| 3169 |
+
pattern = "m" # Medium beat (3rd beat in 4/4)
|
| 3170 |
+
else:
|
| 3171 |
+
pattern = "w" # Weak beat
|
| 3172 |
+
|
| 3173 |
+
# Add row to table
|
| 3174 |
+
timeline += f"| {i+1:<6} | {time:.2f}s | {beat_type:<12} | {pattern}:{1.5 if pattern=='S' else 1.0} |\n"
|
| 3175 |
+
|
| 3176 |
+
# No truncation - show all beats
|
| 3177 |
+
|
| 3178 |
+
# Add a visual timeline of beats
|
| 3179 |
+
timeline += "\n=== VISUAL BEAT TIMELINE ===\n\n"
|
| 3180 |
+
timeline += "Each character represents 0.5 seconds. Beats are marked as:\n"
|
| 3181 |
+
timeline += "S = Strong beat | m = Medium beat | w = Weak beat | · = No beat\n\n"
|
| 3182 |
+
|
| 3183 |
+
# Calculate total duration and create time markers
|
| 3184 |
+
if 'beat_times' in beats_info and len(beats_info['beat_times']) > 0:
|
| 3185 |
+
# Get the max value safely
|
| 3186 |
+
max_beat_time = max([ensure_float(t) for t in beats_info['beat_times']])
|
| 3187 |
+
total_duration = max_beat_time + 2 # Add 2 seconds of padding
|
| 3188 |
+
else:
|
| 3189 |
+
total_duration = 30 # Default duration if no beats found
|
| 3190 |
+
|
| 3191 |
+
time_markers = ""
|
| 3192 |
+
for i in range(0, int(total_duration) + 1, 5):
|
| 3193 |
+
time_markers += f"{i:<5}"
|
| 3194 |
+
timeline += time_markers + " (seconds)\n"
|
| 3195 |
+
|
| 3196 |
+
# Create a ruler for easier time tracking
|
| 3197 |
+
ruler = ""
|
| 3198 |
+
for i in range(0, int(total_duration) + 1):
|
| 3199 |
+
if i % 5 == 0:
|
| 3200 |
+
ruler += "+"
|
| 3201 |
+
else:
|
| 3202 |
+
ruler += "-"
|
| 3203 |
+
ruler += "-" * 9 # Each second is 10 characters wide
|
| 3204 |
+
timeline += ruler + "\n"
|
| 3205 |
+
|
| 3206 |
+
# Create a visualization of beats with symbols
|
| 3207 |
+
beat_line = ["·"] * int(total_duration * 2) # 2 characters per second
|
| 3208 |
+
|
| 3209 |
+
for i, time in enumerate(beats_info['beat_times']):
|
| 3210 |
+
if i >= len(beats_info['beat_strengths']):
|
| 3211 |
+
break
|
| 3212 |
+
|
| 3213 |
+
# Convert to float if it's a numpy array
|
| 3214 |
+
time_val = ensure_float(time)
|
| 3215 |
+
|
| 3216 |
+
# Determine position in the timeline
|
| 3217 |
+
pos = int(time_val * 2) # Convert to position in the beat_line
|
| 3218 |
+
if pos >= len(beat_line):
|
| 3219 |
+
continue
|
| 3220 |
+
|
| 3221 |
+
# Determine beat type based on strength and position
|
| 3222 |
+
strength = beats_info['beat_strengths'][i]
|
| 3223 |
+
# Convert to float if it's a numpy array
|
| 3224 |
+
strength = ensure_float(strength)
|
| 3225 |
+
|
| 3226 |
+
if i % beats_info['time_signature'] == 0:
|
| 3227 |
+
beat_line[pos] = "S" # Strong beat at start of measure
|
| 3228 |
+
elif strength >= 0.8:
|
| 3229 |
+
beat_line[pos] = "S" # Strong beat
|
| 3230 |
+
elif i % beats_info['time_signature'] == beats_info['time_signature'] // 2 and beats_info['time_signature'] > 3:
|
| 3231 |
+
beat_line[pos] = "m" # Medium beat (3rd beat in 4/4)
|
| 3232 |
+
elif strength >= 0.5:
|
| 3233 |
+
beat_line[pos] = "m" # Medium beat
|
| 3234 |
+
else:
|
| 3235 |
+
beat_line[pos] = "w" # Weak beat
|
| 3236 |
+
|
| 3237 |
+
# Format and add to timeline
|
| 3238 |
+
beat_visualization = ""
|
| 3239 |
+
for i in range(0, len(beat_line), 10):
|
| 3240 |
+
beat_visualization += "".join(beat_line[i:i+10])
|
| 3241 |
+
if i + 10 < len(beat_line):
|
| 3242 |
+
beat_visualization += " " # Add space every 5 seconds
|
| 3243 |
+
timeline += beat_visualization + "\n\n"
|
| 3244 |
+
|
| 3245 |
+
# Add measure markers
|
| 3246 |
+
timeline += "=== MEASURE MARKERS ===\n\n"
|
| 3247 |
+
|
| 3248 |
+
# Create a list to track measure start times
|
| 3249 |
+
measure_starts = []
|
| 3250 |
+
for i, time in enumerate(beats_info['beat_times']):
|
| 3251 |
+
if i % beats_info['time_signature'] == 0: # Start of measure
|
| 3252 |
+
# Convert to float if it's a numpy array
|
| 3253 |
+
time_val = ensure_float(time)
|
| 3254 |
+
measure_starts.append((i // beats_info['time_signature'] + 1, time_val))
|
| 3255 |
+
|
| 3256 |
+
# Format measure information
|
| 3257 |
+
if measure_starts:
|
| 3258 |
+
timeline += "| Measure # | Start Time | Duration |\n"
|
| 3259 |
+
timeline += "|-----------|------------|----------|\n"
|
| 3260 |
+
|
| 3261 |
+
for i in range(len(measure_starts)):
|
| 3262 |
+
measure_num, start_time = measure_starts[i]
|
| 3263 |
+
|
| 3264 |
+
# Calculate end time (start of next measure or end of song)
|
| 3265 |
+
if i < len(measure_starts) - 1:
|
| 3266 |
+
end_time = measure_starts[i+1][1]
|
| 3267 |
+
elif 'beat_times' in beats_info and len(beats_info['beat_times']) > 0:
|
| 3268 |
+
# Get the last beat time and convert to float if needed
|
| 3269 |
+
last_beat = beats_info['beat_times'][-1]
|
| 3270 |
+
end_time = ensure_float(last_beat)
|
| 3271 |
+
else:
|
| 3272 |
+
end_time = start_time + 2.0 # Default 2 seconds if no next measure
|
| 3273 |
+
|
| 3274 |
+
duration = end_time - start_time
|
| 3275 |
+
|
| 3276 |
+
timeline += f"| {measure_num:<9} | {start_time:.2f}s | {duration:.2f}s |\n"
|
| 3277 |
+
|
| 3278 |
+
# No truncation - show all measures
|
| 3279 |
+
|
| 3280 |
+
# Add phrase information
|
| 3281 |
+
if 'phrases' in beats_info and beats_info['phrases']:
|
| 3282 |
+
timeline += "\n=== MUSICAL PHRASES ===\n\n"
|
| 3283 |
+
for i, phrase in enumerate(beats_info['phrases']):
|
| 3284 |
+
# Show all phrases, not just the first 10
|
| 3285 |
+
if not phrase:
|
| 3286 |
+
continue
|
| 3287 |
+
|
| 3288 |
+
# Safely check phrase indices
|
| 3289 |
+
if not (len(phrase) > 0 and len(beats_info['beat_times']) > 0):
|
| 3290 |
+
continue
|
| 3291 |
+
|
| 3292 |
+
start_beat = min(phrase[0], len(beats_info['beat_times'])-1)
|
| 3293 |
+
end_beat = min(phrase[-1], len(beats_info['beat_times'])-1)
|
| 3294 |
+
|
| 3295 |
+
# Convert to float if needed
|
| 3296 |
+
phrase_start = ensure_float(beats_info['beat_times'][start_beat])
|
| 3297 |
+
phrase_end = ensure_float(beats_info['beat_times'][end_beat])
|
| 3298 |
+
|
| 3299 |
+
timeline += f"Phrase {i+1}: Beats {start_beat+1}-{end_beat+1} ({phrase_start:.2f}s - {phrase_end:.2f}s)\n"
|
| 3300 |
+
|
| 3301 |
+
# Create syllable template for this phrase with simplified numpy handling
|
| 3302 |
+
phrase_beats = {
|
| 3303 |
+
"beat_times": [ensure_float(beats_info['beat_times'][j])
|
| 3304 |
+
for j in phrase if j < len(beats_info['beat_times'])],
|
| 3305 |
+
"beat_strengths": [ensure_float(beats_info['beat_strengths'][j])
|
| 3306 |
+
for j in phrase if j < len(beats_info['beat_strengths'])],
|
| 3307 |
+
"tempo": ensure_float(beats_info['tempo']),
|
| 3308 |
+
"time_signature": beats_info['time_signature'],
|
| 3309 |
+
"phrases": [list(range(len(phrase)))]
|
| 3310 |
+
}
|
| 3311 |
+
|
| 3312 |
+
template = create_flexible_syllable_templates(phrase_beats)
|
| 3313 |
+
timeline += f" Syllable Template: {template}\n"
|
| 3314 |
+
|
| 3315 |
+
# Create a visual representation of this phrase
|
| 3316 |
+
if phrase_start < total_duration and phrase_end < total_duration:
|
| 3317 |
+
# Create a timeline for this phrase
|
| 3318 |
+
phrase_visualization = ["·"] * int(total_duration * 2)
|
| 3319 |
+
|
| 3320 |
+
# Mark the phrase boundaries
|
| 3321 |
+
start_pos = int(phrase_start * 2)
|
| 3322 |
+
end_pos = int(phrase_end * 2)
|
| 3323 |
+
|
| 3324 |
+
if start_pos < len(phrase_visualization):
|
| 3325 |
+
phrase_visualization[start_pos] = "["
|
| 3326 |
+
|
| 3327 |
+
if end_pos < len(phrase_visualization):
|
| 3328 |
+
phrase_visualization[end_pos] = "]"
|
| 3329 |
+
|
| 3330 |
+
# Mark the beats in this phrase
|
| 3331 |
+
for j in phrase:
|
| 3332 |
+
if j < len(beats_info['beat_times']):
|
| 3333 |
+
beat_time = ensure_float(beats_info['beat_times'][j])
|
| 3334 |
+
beat_pos = int(beat_time * 2)
|
| 3335 |
+
|
| 3336 |
+
if beat_pos < len(phrase_visualization) and beat_pos != start_pos and beat_pos != end_pos:
|
| 3337 |
+
# Determine beat type
|
| 3338 |
+
if j % beats_info['time_signature'] == 0:
|
| 3339 |
+
phrase_visualization[beat_pos] = "S"
|
| 3340 |
+
elif j % beats_info['time_signature'] == beats_info['time_signature'] // 2:
|
| 3341 |
+
phrase_visualization[beat_pos] = "m"
|
| 3342 |
+
else:
|
| 3343 |
+
phrase_visualization[beat_pos] = "w"
|
| 3344 |
+
|
| 3345 |
+
# Format and add visualization
|
| 3346 |
+
phrase_visual = ""
|
| 3347 |
+
for k in range(0, len(phrase_visualization), 10):
|
| 3348 |
+
phrase_visual += "".join(phrase_visualization[k:k+10])
|
| 3349 |
+
if k + 10 < len(phrase_visualization):
|
| 3350 |
+
phrase_visual += " "
|
| 3351 |
+
|
| 3352 |
+
timeline += f" Timeline: {phrase_visual}\n\n"
|
| 3353 |
+
|
| 3354 |
+
# Add second-level script display
|
| 3355 |
+
try:
|
| 3356 |
+
# Get second-level beat information
|
| 3357 |
+
subbeat_info = detect_beats_and_subbeats(y, sr, subdivision=4)
|
| 3358 |
+
duration = librosa.get_duration(y=y, sr=sr)
|
| 3359 |
+
|
| 3360 |
+
# Map to seconds
|
| 3361 |
+
sec_map = map_beats_to_seconds(subbeat_info["subbeat_times"], duration)
|
| 3362 |
+
|
| 3363 |
+
# Create templates
|
| 3364 |
+
templates = create_second_level_templates(sec_map, subbeat_info["tempo"])
|
| 3365 |
+
|
| 3366 |
+
# Add to timeline
|
| 3367 |
+
timeline += "\n=== SECOND-LEVEL SCRIPT ===\n\n"
|
| 3368 |
+
timeline += "Each line below represents ONE SECOND of audio with matching lyric content.\n"
|
| 3369 |
+
timeline += "| Second | Beat Pattern | Lyric Content |\n"
|
| 3370 |
+
timeline += "|--------|-------------|---------------|\n"
|
| 3371 |
+
|
| 3372 |
+
# Get clean lyrics (without analysis notes)
|
| 3373 |
+
clean_lyrics = lyrics
|
| 3374 |
+
if isinstance(lyrics, str):
|
| 3375 |
+
if "[Note: Rhythm Analysis]" in lyrics:
|
| 3376 |
+
clean_lyrics = lyrics.split("[Note: Rhythm Analysis]")[0].strip()
|
| 3377 |
+
elif "[Note: Potential rhythm mismatches" in lyrics:
|
| 3378 |
+
clean_lyrics = lyrics.split("[Note:")[0].strip()
|
| 3379 |
+
|
| 3380 |
+
# Get lyric lines
|
| 3381 |
+
lines = clean_lyrics.strip().split('\n') if clean_lyrics else []
|
| 3382 |
+
|
| 3383 |
+
for i, template in enumerate(templates):
|
| 3384 |
+
# Get corresponding lyric line if available
|
| 3385 |
+
lyric = lines[i] if i < len(lines) else ""
|
| 3386 |
+
if lyric.startswith('[') and ']' in lyric:
|
| 3387 |
+
lyric = "" # Skip section headers
|
| 3388 |
+
|
| 3389 |
+
# Format nicely for display
|
| 3390 |
+
timeline += f"| {i+1:<6} | {template:<30} | {lyric[:40]} |\n"
|
| 3391 |
+
|
| 3392 |
+
# Add ASCII visualization of second-level beats
|
| 3393 |
+
timeline += "\n=== SECOND-LEVEL VISUALIZATION ===\n\n"
|
| 3394 |
+
timeline += "Each row represents ONE SECOND. Beat types:\n"
|
| 3395 |
+
timeline += "S = Strong beat | m = Medium beat | w = Weak beat | · = No beat\n\n"
|
| 3396 |
+
|
| 3397 |
+
for i, window in enumerate(sec_map):
|
| 3398 |
+
beats = window["beats"]
|
| 3399 |
+
|
| 3400 |
+
# Create ASCII visualization
|
| 3401 |
+
beat_viz = ["·"] * 20 # 20 columns for visualization
|
| 3402 |
+
|
| 3403 |
+
for beat in beats:
|
| 3404 |
+
# Calculate position in visualization
|
| 3405 |
+
pos = int(beat["relative_pos"] * 19) # Map 0-1 to 0-19
|
| 3406 |
+
if 0 <= pos < len(beat_viz):
|
| 3407 |
+
# Set marker based on beat type
|
| 3408 |
+
if beat["type"] == "main":
|
| 3409 |
+
beat_viz[pos] = "S"
|
| 3410 |
+
elif beat["strength"] >= 0.7:
|
| 3411 |
+
beat_viz[pos] = "m"
|
| 3412 |
+
else:
|
| 3413 |
+
beat_viz[pos] = "w"
|
| 3414 |
+
|
| 3415 |
+
# Get corresponding lyric
|
| 3416 |
+
lyric = lines[i] if i < len(lines) else ""
|
| 3417 |
+
if lyric.startswith('[') and ']' in lyric:
|
| 3418 |
+
lyric = ""
|
| 3419 |
+
|
| 3420 |
+
# Format visualization line
|
| 3421 |
+
viz_line = f"Second {i+1:2d}: [" + "".join(beat_viz) + "]"
|
| 3422 |
+
if lyric:
|
| 3423 |
+
viz_line += f" → {lyric[:40]}"
|
| 3424 |
+
|
| 3425 |
+
timeline += viz_line + "\n"
|
| 3426 |
+
|
| 3427 |
+
except Exception as e:
|
| 3428 |
+
timeline += f"\n[Error generating second-level analysis: {str(e)}]"
|
| 3429 |
+
|
| 3430 |
+
# Add a section showing alignment if lyrics were generated
|
| 3431 |
+
if lyrics and isinstance(lyrics, str):
|
| 3432 |
+
timeline += "\n=== LYRICS-BEAT ALIGNMENT ===\n\n"
|
| 3433 |
+
# Remove rhythm analysis notes from lyrics if present
|
| 3434 |
+
if "[Note:" in lyrics:
|
| 3435 |
+
clean_lyrics = lyrics.split("[Note:")[0].strip()
|
| 3436 |
+
else:
|
| 3437 |
+
clean_lyrics = lyrics
|
| 3438 |
+
|
| 3439 |
+
lines = clean_lyrics.strip().split('\n')
|
| 3440 |
+
|
| 3441 |
+
# Show alignment for ALL lines, not just the first 10
|
| 3442 |
+
for i, line in enumerate(lines):
|
| 3443 |
+
if not line.strip() or line.startswith('['):
|
| 3444 |
+
continue
|
| 3445 |
+
|
| 3446 |
+
timeline += f"Line: \"{line}\"\n"
|
| 3447 |
+
|
| 3448 |
+
# Count syllables
|
| 3449 |
+
syllable_count = count_syllables(line)
|
| 3450 |
+
timeline += f" Syllables: {syllable_count}\n"
|
| 3451 |
+
|
| 3452 |
+
# Show ideal timing (if we have enough phrases)
|
| 3453 |
+
if 'phrases' in beats_info and beats_info['phrases'] and i < len(beats_info['phrases']):
|
| 3454 |
+
phrase = beats_info['phrases'][i]
|
| 3455 |
+
# Safely check if phrase has elements and indices are valid
|
| 3456 |
+
if phrase and len(phrase) > 0 and len(beats_info['beat_times']) > 0:
|
| 3457 |
+
start_beat = min(phrase[0], len(beats_info['beat_times'])-1)
|
| 3458 |
+
end_beat = min(phrase[-1], len(beats_info['beat_times'])-1)
|
| 3459 |
+
|
| 3460 |
+
start_time = ensure_float(beats_info['beat_times'][start_beat])
|
| 3461 |
+
end_time = ensure_float(beats_info['beat_times'][end_beat])
|
| 3462 |
+
|
| 3463 |
+
timeline += f" Timing: {start_time:.2f}s - {end_time:.2f}s\n"
|
| 3464 |
+
|
| 3465 |
+
# Create a visualization of syllable alignment
|
| 3466 |
+
timeline += " Alignment: "
|
| 3467 |
+
|
| 3468 |
+
# Create a timeline focused on just this phrase
|
| 3469 |
+
phrase_duration = end_time - start_time
|
| 3470 |
+
syllable_viz = []
|
| 3471 |
+
|
| 3472 |
+
# Initialize with beat markers for this phrase
|
| 3473 |
+
for j in phrase:
|
| 3474 |
+
if j < len(beats_info['beat_times']):
|
| 3475 |
+
beat_time = ensure_float(beats_info['beat_times'][j])
|
| 3476 |
+
# Handle edge case where phrase_duration is very small
|
| 3477 |
+
if phrase_duration > 0.001: # Avoid division by very small numbers
|
| 3478 |
+
relative_pos = int((beat_time - start_time) / phrase_duration * syllable_count)
|
| 3479 |
+
else:
|
| 3480 |
+
relative_pos = 0
|
| 3481 |
+
|
| 3482 |
+
while len(syllable_viz) <= relative_pos:
|
| 3483 |
+
syllable_viz.append("·")
|
| 3484 |
+
|
| 3485 |
+
if j % beats_info['time_signature'] == 0:
|
| 3486 |
+
syllable_viz[relative_pos] = "S"
|
| 3487 |
+
elif j % beats_info['time_signature'] == beats_info['time_signature'] // 2:
|
| 3488 |
+
syllable_viz[relative_pos] = "m"
|
| 3489 |
+
else:
|
| 3490 |
+
syllable_viz[relative_pos] = "w"
|
| 3491 |
+
|
| 3492 |
+
# Fill in any gaps
|
| 3493 |
+
while len(syllable_viz) < syllable_count:
|
| 3494 |
+
syllable_viz.append("·")
|
| 3495 |
+
|
| 3496 |
+
# Trim if too long
|
| 3497 |
+
syllable_viz = syllable_viz[:syllable_count]
|
| 3498 |
+
|
| 3499 |
+
# Now map to the line
|
| 3500 |
+
timeline += "".join(syllable_viz) + "\n"
|
| 3501 |
+
|
| 3502 |
+
timeline += "\n"
|
| 3503 |
+
|
| 3504 |
+
# No truncation message for lines
|
| 3505 |
+
|
| 3506 |
+
return timeline
|
| 3507 |
+
|
| 3508 |
+
except Exception as e:
|
| 3509 |
+
print(f"Error generating complete beat timeline: {str(e)}")
|
| 3510 |
+
return f"Error generating complete beat timeline: {str(e)}"
|
| 3511 |
+
|
| 3512 |
+
def display_results(audio_file):
|
| 3513 |
+
"""Process audio file and return formatted results for display in the UI."""
|
| 3514 |
+
# Default error response
|
| 3515 |
+
error_response = ("Please upload an audio file.",
|
| 3516 |
+
"No emotion analysis available.",
|
| 3517 |
+
"No audio classification available.",
|
| 3518 |
+
"No lyrics generated.",
|
| 3519 |
+
"No beat timeline available.")
|
| 3520 |
+
|
| 3521 |
+
if audio_file is None:
|
| 3522 |
+
return error_response
|
| 3523 |
+
|
| 3524 |
+
try:
|
| 3525 |
+
# Process audio and get results
|
| 3526 |
+
results = process_audio(audio_file)
|
| 3527 |
+
|
| 3528 |
+
# Check if we got an error message
|
| 3529 |
+
if isinstance(results, str) and "Error" in results:
|
| 3530 |
+
return results, *error_response[1:]
|
| 3531 |
+
elif isinstance(results, tuple) and isinstance(results[0], str) and "Error" in results[0]:
|
| 3532 |
+
return results[0], *error_response[1:]
|
| 3533 |
+
|
| 3534 |
+
# Extract results
|
| 3535 |
+
if isinstance(results, dict):
|
| 3536 |
+
# New format
|
| 3537 |
+
genre_results = results.get("genre_results", "Genre classification failed")
|
| 3538 |
+
lyrics = results.get("lyrics", "Lyrics generation failed")
|
| 3539 |
+
ast_results = results.get("ast_results", [])
|
| 3540 |
+
else:
|
| 3541 |
+
# Old tuple format
|
| 3542 |
+
genre_results, lyrics, ast_results = results
|
| 3543 |
+
|
| 3544 |
+
# Get clean lyrics (without analysis notes)
|
| 3545 |
+
clean_lyrics = lyrics
|
| 3546 |
+
if isinstance(lyrics, str):
|
| 3547 |
+
if "[Note: Rhythm Analysis]" in lyrics:
|
| 3548 |
+
clean_lyrics = lyrics.split("[Note: Rhythm Analysis]")[0].strip()
|
| 3549 |
+
elif "[Note: Potential rhythm mismatches" in lyrics:
|
| 3550 |
+
clean_lyrics = lyrics.split("[Note:")[0].strip()
|
| 3551 |
+
|
| 3552 |
+
# Generate beat timeline - use the complete timeline function that shows all beats
|
| 3553 |
+
beat_timeline = format_complete_beat_timeline(audio_file, clean_lyrics)
|
| 3554 |
+
|
| 3555 |
+
# Format emotion analysis results
|
| 3556 |
+
emotion_text = "No emotion analysis available."
|
| 3557 |
+
try:
|
| 3558 |
+
emotion_results = music_analyzer.analyze_music(audio_file)
|
| 3559 |
+
emotion_text = (f"Tempo: {emotion_results['summary']['tempo']:.1f} BPM\n"
|
| 3560 |
+
f"Key: {emotion_results['summary']['key']} {emotion_results['summary']['mode']}\n"
|
| 3561 |
+
f"Primary Emotion: {emotion_results['summary']['primary_emotion']}\n"
|
| 3562 |
+
f"Primary Theme: {emotion_results['summary']['primary_theme']}")
|
| 3563 |
+
|
| 3564 |
+
# Add song structure if available (without nested try/except)
|
| 3565 |
+
y, sr = load_audio(audio_file, SAMPLE_RATE)
|
| 3566 |
+
beats_info = detect_beats(y, sr)
|
| 3567 |
+
sections_info = detect_sections(y, sr)
|
| 3568 |
+
|
| 3569 |
+
if sections_info:
|
| 3570 |
+
emotion_text += "\n\nSong Structure:\n"
|
| 3571 |
+
for section in sections_info:
|
| 3572 |
+
emotion_text += (f"- {section['type'].capitalize()}: {section['start']:.1f}s to {section['end']:.1f}s "
|
| 3573 |
+
f"({section['duration']:.1f}s)\n")
|
| 3574 |
+
except Exception as e:
|
| 3575 |
+
print(f"Error in emotion analysis: {str(e)}")
|
| 3576 |
+
|
| 3577 |
+
# Format audio classification results
|
| 3578 |
+
ast_text = "No valid audio classification results available."
|
| 3579 |
+
if ast_results and isinstance(ast_results, list):
|
| 3580 |
+
ast_text = "Audio Classification Results:\n"
|
| 3581 |
+
for result in ast_results[:5]: # Show top 5 results
|
| 3582 |
+
ast_text += f"{result['label']}: {result['score']*100:.2f}%\n"
|
| 3583 |
+
|
| 3584 |
+
# Return all results
|
| 3585 |
+
return genre_results, emotion_text, ast_text, clean_lyrics, beat_timeline
|
| 3586 |
+
|
| 3587 |
+
except Exception as e:
|
| 3588 |
+
error_msg = f"Error: {str(e)}"
|
| 3589 |
+
print(error_msg)
|
| 3590 |
+
return error_msg, *error_response[1:]
|
| 3591 |
+
|
| 3592 |
# Create enhanced Gradio interface with tabs for better organization
|
| 3593 |
with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
|
| 3594 |
gr.Markdown("# Music Genre Classifier & Lyrics Generator")
|
|
|
|
| 3629 |
with gr.TabItem("Generated Lyrics"):
|
| 3630 |
lyrics_output = gr.Textbox(label="Lyrics", lines=18)
|
| 3631 |
|
| 3632 |
+
with gr.TabItem("Beat & Syllable Timeline"):
|
| 3633 |
+
beat_timeline_output = gr.Textbox(label="Beat Timings & Syllable Patterns", lines=40)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3634 |
|
| 3635 |
# Connect the button to the display function with updated outputs
|
| 3636 |
submit_btn.click(
|
| 3637 |
fn=display_results,
|
| 3638 |
inputs=[audio_input],
|
| 3639 |
+
outputs=[genre_output, emotion_output, ast_output, lyrics_output, beat_timeline_output]
|
| 3640 |
)
|
| 3641 |
|
| 3642 |
# Enhanced explanation of how the system works
|
|
|
|
| 3654 |
- Strong and weak beats
|
| 3655 |
- Natural phrase boundaries
|
| 3656 |
- Time signature and tempo variations
|
| 3657 |
+
- Beat subdivisions (half and quarter beats)
|
| 3658 |
+
|
| 3659 |
+
5. **Second-Level Alignment**: The system maps beats and subbeats to each second of audio, creating precise templates for perfect alignment.
|
| 3660 |
|
| 3661 |
+
6. **Syllable Template Creation**: For each second of audio, the system generates precise syllable templates that reflect:
|
| 3662 |
- Beat stress patterns (strong, medium, weak)
|
| 3663 |
- Appropriate syllable counts based on tempo
|
| 3664 |
- Genre-specific rhythmic qualities
|
| 3665 |
+
- Half-beat and quarter-beat subdivisions
|
| 3666 |
|
| 3667 |
+
7. **Lyrics Generation**: Using the detected genre, emotion, and rhythm patterns, a large language model generates lyrics that:
|
| 3668 |
- Match the emotional quality of the music
|
| 3669 |
+
- Follow the precise syllable templates for each second
|
| 3670 |
- Align stressed syllables with strong beats
|
| 3671 |
- Maintain genre-appropriate style and themes
|
| 3672 |
|
| 3673 |
+
8. **Rhythm Verification**: The system verifies the generated lyrics, analyzing:
|
| 3674 |
- Syllable count accuracy
|
| 3675 |
- Stress alignment with strong beats
|
| 3676 |
- Word stress patterns
|
| 3677 |
+
- Second-by-second alignment precision
|
| 3678 |
|
| 3679 |
+
9. **Refinement**: If significant rhythm mismatches are detected, the system can automatically refine the lyrics for better alignment.
|
| 3680 |
|
| 3681 |
This multi-step process creates lyrics that feel naturally connected to the music, as if they were written specifically for it.
|
| 3682 |
""")
|
utils.py
CHANGED
|
@@ -37,54 +37,6 @@ def extract_mfcc_features(y, sr, n_mfcc=20):
|
|
| 37 |
# Return a fallback feature vector if extraction fails
|
| 38 |
return np.zeros(n_mfcc)
|
| 39 |
|
| 40 |
-
def calculate_lyrics_length(duration, tempo=100, time_signature=4):
|
| 41 |
-
"""Calculate appropriate lyrics structure based on musical principles."""
|
| 42 |
-
# Legacy behavior - simple calculation based on duration
|
| 43 |
-
lines_count = max(4, int(duration / 10))
|
| 44 |
-
|
| 45 |
-
# If only duration was provided (original usage), return just the integer
|
| 46 |
-
if not isinstance(tempo, (int, float)) or not isinstance(time_signature, (int, float)):
|
| 47 |
-
return lines_count
|
| 48 |
-
|
| 49 |
-
# Enhanced calculation
|
| 50 |
-
beats_per_minute = tempo
|
| 51 |
-
beats_per_second = beats_per_minute / 60
|
| 52 |
-
total_beats = duration * beats_per_second
|
| 53 |
-
total_measures = total_beats / time_signature
|
| 54 |
-
|
| 55 |
-
# Determine section distributions
|
| 56 |
-
verse_lines = 0
|
| 57 |
-
chorus_lines = 0
|
| 58 |
-
bridge_lines = 0
|
| 59 |
-
|
| 60 |
-
if lines_count <= 6:
|
| 61 |
-
verse_lines = 2
|
| 62 |
-
chorus_lines = 2
|
| 63 |
-
elif lines_count <= 10:
|
| 64 |
-
verse_lines = 3
|
| 65 |
-
chorus_lines = 2
|
| 66 |
-
else:
|
| 67 |
-
verse_lines = 3
|
| 68 |
-
chorus_lines = 2
|
| 69 |
-
bridge_lines = 2
|
| 70 |
-
|
| 71 |
-
# Create structured output
|
| 72 |
-
song_structure = {
|
| 73 |
-
"total_measures": int(total_measures),
|
| 74 |
-
"lines_count": lines_count, # Include the original line count
|
| 75 |
-
"sections": [
|
| 76 |
-
{"type": "verse", "lines": verse_lines, "measures": int(total_measures * 0.4)},
|
| 77 |
-
{"type": "chorus", "lines": chorus_lines, "measures": int(total_measures * 0.3)}
|
| 78 |
-
]
|
| 79 |
-
}
|
| 80 |
-
|
| 81 |
-
if bridge_lines > 0:
|
| 82 |
-
song_structure["sections"].append(
|
| 83 |
-
{"type": "bridge", "lines": bridge_lines, "measures": int(total_measures * 0.2)}
|
| 84 |
-
)
|
| 85 |
-
|
| 86 |
-
return song_structure
|
| 87 |
-
|
| 88 |
def format_genre_results(top_genres):
|
| 89 |
"""Format genre classification results for display."""
|
| 90 |
result = "Top Detected Genres:\n"
|
|
@@ -103,17 +55,3 @@ def ensure_cuda_availability():
|
|
| 103 |
print("CUDA is not available. Using CPU for inference.")
|
| 104 |
return cuda_available
|
| 105 |
|
| 106 |
-
def preprocess_audio_for_model(waveform, sample_rate, target_sample_rate=16000, max_length=16000):
|
| 107 |
-
"""Preprocess audio for model input (resample, pad/trim)."""
|
| 108 |
-
# Resample if needed
|
| 109 |
-
if sample_rate != target_sample_rate:
|
| 110 |
-
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=target_sample_rate)
|
| 111 |
-
|
| 112 |
-
# Trim or pad to expected length
|
| 113 |
-
if len(waveform) > max_length:
|
| 114 |
-
waveform = waveform[:max_length]
|
| 115 |
-
elif len(waveform) < max_length:
|
| 116 |
-
padding = max_length - len(waveform)
|
| 117 |
-
waveform = np.pad(waveform, (0, padding), 'constant')
|
| 118 |
-
|
| 119 |
-
return waveform
|
|
|
|
| 37 |
# Return a fallback feature vector if extraction fails
|
| 38 |
return np.zeros(n_mfcc)
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
def format_genre_results(top_genres):
|
| 41 |
"""Format genre classification results for display."""
|
| 42 |
result = "Top Detected Genres:\n"
|
|
|
|
| 55 |
print("CUDA is not available. Using CPU for inference.")
|
| 56 |
return cuda_available
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|