root
commited on
Commit
·
5b33796
1
Parent(s):
c95399f
ss
Browse files- README.md +27 -23
- app.py +0 -0
- emotionanalysis.py +558 -36
- requirements.txt +0 -1
README.md
CHANGED
@@ -11,37 +11,41 @@ license: mit
|
|
11 |
short_description: AI music genre detection and lyrics generation
|
12 |
---
|
13 |
|
14 |
-
# Music
|
15 |
|
16 |
-
This Hugging Face Space application
|
17 |
-
|
18 |
-
1. **Music Genre Classification**: Upload a music file and get an analysis of its genre using the [dima806/music_genres_classification](https://huggingface.co/dima806/music_genres_classification) model.
|
19 |
-
|
20 |
-
2. **Lyrics Generation**: Based on the detected genre, the app generates original lyrics using [Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) that match both the style of the genre and approximate length of the song.
|
21 |
|
22 |
## Features
|
23 |
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
- Lyrics length is automatically adjusted based on the song duration
|
28 |
-
- Simple and intuitive user interface
|
29 |
|
30 |
-
##
|
31 |
|
32 |
-
1.
|
33 |
-
2.
|
34 |
-
3.
|
35 |
-
4.
|
36 |
|
37 |
## Technical Details
|
38 |
|
39 |
-
|
40 |
-
-
|
41 |
-
-
|
42 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
##
|
45 |
|
46 |
-
-
|
47 |
-
-
|
|
|
11 |
short_description: AI music genre detection and lyrics generation
|
12 |
---
|
13 |
|
14 |
+
# Music Analysis & Lyrics Generator
|
15 |
|
16 |
+
This Hugging Face Space application analyzes music files and generates lyrics that match the musical characteristics.
|
|
|
|
|
|
|
|
|
17 |
|
18 |
## Features
|
19 |
|
20 |
+
- **Music Analysis**: Detects tempo, time signature, key, emotion, and theme
|
21 |
+
- **Genre Classification**: Identifies the music genre using a pre-trained classifier
|
22 |
+
- **Lyrics Generation**: Creates lyrics that match the style, emotion, and length of your music using Qwen3-32B
|
|
|
|
|
23 |
|
24 |
+
## How to Use
|
25 |
|
26 |
+
1. Upload a music file or record audio directly in the app
|
27 |
+
2. Click "Analyze and Generate Lyrics"
|
28 |
+
3. View the analysis results showing tempo, key, emotion, theme, and genre
|
29 |
+
4. Check the generated lyrics tailored to match your music
|
30 |
|
31 |
## Technical Details
|
32 |
|
33 |
+
This application uses:
|
34 |
+
- **MusicAnalyzer**: Custom analysis tool for detecting musical features
|
35 |
+
- **Hugging Face Transformers**: Pre-trained models for genre classification and lyrics generation
|
36 |
+
- **Gradio**: For the user interface
|
37 |
+
- **Librosa**: For audio processing
|
38 |
+
|
39 |
+
## Requirements
|
40 |
+
|
41 |
+
See requirements.txt for detailed dependencies.
|
42 |
+
|
43 |
+
## Limitations
|
44 |
+
|
45 |
+
- Large audio files may take longer to process
|
46 |
+
- The quality of lyrics generation depends on the clarity of the audio and the detected musical features
|
47 |
|
48 |
+
## Credits
|
49 |
|
50 |
+
- Genre classification model: dima806/music_genres_classification
|
51 |
+
- LLM for lyrics generation: Qwen/Qwen3-32B
|
app.py
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
emotionanalysis.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import librosa
|
2 |
import numpy as np
|
|
|
|
|
3 |
try:
|
4 |
import matplotlib.pyplot as plt
|
5 |
except ImportError:
|
@@ -7,6 +9,7 @@ except ImportError:
|
|
7 |
from scipy.stats import mode
|
8 |
import warnings
|
9 |
warnings.filterwarnings('ignore') # Suppress librosa warnings
|
|
|
10 |
class MusicAnalyzer:
|
11 |
def __init__(self):
|
12 |
# Emotion feature mappings - these define characteristics of different emotions
|
@@ -31,6 +34,40 @@ class MusicAnalyzer:
|
|
31 |
|
32 |
# Musical key mapping
|
33 |
self.key_names = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def load_audio(self, file_path, sr=22050, duration=None):
|
36 |
"""Load audio file and return time series and sample rate"""
|
@@ -56,8 +93,12 @@ class MusicAnalyzer:
|
|
56 |
ac = librosa.autocorrelate(onset_env, max_size=sr // 2)
|
57 |
ac = librosa.util.normalize(ac, norm=np.inf)
|
58 |
|
59 |
-
#
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
|
62 |
# Compute onset strength to get a measure of rhythm intensity
|
63 |
rhythm_intensity = np.mean(onset_env) / np.max(onset_env) if np.max(onset_env) > 0 else 0
|
@@ -65,48 +106,509 @@ class MusicAnalyzer:
|
|
65 |
# Rhythm complexity based on variation in onset strength
|
66 |
rhythm_complexity = np.std(onset_env) / np.mean(onset_env) if np.mean(onset_env) > 0 else 0
|
67 |
|
|
|
|
|
|
|
|
|
68 |
return {
|
69 |
"tempo": float(tempo),
|
70 |
-
"beat_times":
|
71 |
-
"beat_intervals":
|
72 |
"beat_regularity": float(beat_regularity),
|
73 |
"rhythm_intensity": float(rhythm_intensity),
|
74 |
"rhythm_complexity": float(rhythm_complexity),
|
75 |
-
"estimated_time_signature": estimated_signature
|
|
|
|
|
76 |
}
|
77 |
|
78 |
-
def
|
79 |
-
"""
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
if len(peaks) == 0:
|
95 |
-
return "4/4"
|
96 |
-
|
97 |
-
#
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
#
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
else:
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
def analyze_tonality(self, y, sr):
|
112 |
"""Analyze tonal features: key, mode, harmonic features"""
|
@@ -355,6 +857,26 @@ class MusicAnalyzer:
|
|
355 |
emotion_data = self.analyze_emotion(rhythm_data, tonal_data, energy_data)
|
356 |
theme_data = self.analyze_theme(rhythm_data, tonal_data, emotion_data)
|
357 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
# Combine all results
|
359 |
return {
|
360 |
"file": file_path,
|
@@ -364,7 +886,7 @@ class MusicAnalyzer:
|
|
364 |
"emotion_analysis": emotion_data,
|
365 |
"theme_analysis": theme_data,
|
366 |
"summary": {
|
367 |
-
"tempo": rhythm_data["tempo"],
|
368 |
"time_signature": rhythm_data["estimated_time_signature"],
|
369 |
"key": tonal_data["key"],
|
370 |
"mode": tonal_data["mode"],
|
|
|
1 |
import librosa
|
2 |
import numpy as np
|
3 |
+
from scipy import signal
|
4 |
+
from collections import Counter
|
5 |
try:
|
6 |
import matplotlib.pyplot as plt
|
7 |
except ImportError:
|
|
|
9 |
from scipy.stats import mode
|
10 |
import warnings
|
11 |
warnings.filterwarnings('ignore') # Suppress librosa warnings
|
12 |
+
|
13 |
class MusicAnalyzer:
|
14 |
def __init__(self):
|
15 |
# Emotion feature mappings - these define characteristics of different emotions
|
|
|
34 |
|
35 |
# Musical key mapping
|
36 |
self.key_names = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
|
37 |
+
|
38 |
+
# Common time signatures and their beat patterns with weights for prior probability
|
39 |
+
self.common_time_signatures = {
|
40 |
+
"4/4": {"beats_per_bar": 4, "beat_pattern": [1.0, 0.2, 0.5, 0.2], "weight": 0.35},
|
41 |
+
"3/4": {"beats_per_bar": 3, "beat_pattern": [1.0, 0.2, 0.3], "weight": 0.25},
|
42 |
+
"2/4": {"beats_per_bar": 2, "beat_pattern": [1.0, 0.3], "weight": 0.15},
|
43 |
+
"6/8": {"beats_per_bar": 6, "beat_pattern": [1.0, 0.2, 0.3, 0.8, 0.2, 0.3], "weight": 0.25},
|
44 |
+
"5/4": {"beats_per_bar": 5, "beat_pattern": [1.0, 0.2, 0.4, 0.7, 0.2], "weight": 0.10},
|
45 |
+
"7/8": {"beats_per_bar": 7, "beat_pattern": [1.0, 0.2, 0.3, 0.8, 0.2, 0.2, 0.3], "weight": 0.10},
|
46 |
+
"9/8": {"beats_per_bar": 9, "beat_pattern": [1.0, 0.2, 0.3, 0.8, 0.2, 0.3, 0.7, 0.2, 0.3], "weight": 0.10},
|
47 |
+
"12/8": {"beats_per_bar": 12, "beat_pattern": [1.0, 0.2, 0.3, 0.6, 0.2, 0.3, 0.8, 0.2, 0.3, 0.6, 0.2, 0.3], "weight": 0.15}
|
48 |
+
}
|
49 |
+
|
50 |
+
# Add common accent patterns for different time signatures
|
51 |
+
self.accent_patterns = {
|
52 |
+
"4/4": [[1, 0, 0, 0], [1, 0, 2, 0], [1, 0, 2, 0, 3, 0, 2, 0]],
|
53 |
+
"3/4": [[1, 0, 0], [1, 0, 2]],
|
54 |
+
"2/4": [[1, 0], [1, 2]],
|
55 |
+
"6/8": [[1, 0, 0, 2, 0, 0], [1, 0, 0, 2, 0, 3]],
|
56 |
+
"5/4": [[1, 0, 0, 2, 0], [1, 0, 2, 0, 0]],
|
57 |
+
"7/8": [[1, 0, 0, 2, 0, 0, 0], [1, 0, 0, 2, 0, 3, 0]],
|
58 |
+
"9/8": [[1, 0, 0, 2, 0, 0, 3, 0, 0]],
|
59 |
+
"12/8": [[1, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0]]
|
60 |
+
}
|
61 |
+
|
62 |
+
# Expected rhythm density (relative note density per beat) for different time signatures
|
63 |
+
self.rhythm_density = {
|
64 |
+
"4/4": [1.0, 0.7, 0.8, 0.6],
|
65 |
+
"3/4": [1.0, 0.6, 0.7],
|
66 |
+
"6/8": [1.0, 0.5, 0.4, 0.8, 0.5, 0.4],
|
67 |
+
"2/4": [1.0, 0.6],
|
68 |
+
"5/4": [1.0, 0.6, 0.8, 0.7, 0.6],
|
69 |
+
"7/8": [1.0, 0.5, 0.4, 0.8, 0.5, 0.4, 0.5]
|
70 |
+
}
|
71 |
|
72 |
def load_audio(self, file_path, sr=22050, duration=None):
|
73 |
"""Load audio file and return time series and sample rate"""
|
|
|
93 |
ac = librosa.autocorrelate(onset_env, max_size=sr // 2)
|
94 |
ac = librosa.util.normalize(ac, norm=np.inf)
|
95 |
|
96 |
+
# Advanced time signature detection
|
97 |
+
time_sig_result = self._detect_time_signature(y, sr)
|
98 |
+
|
99 |
+
# Extract results from the time signature detection
|
100 |
+
estimated_signature = time_sig_result["time_signature"]
|
101 |
+
time_sig_confidence = time_sig_result["confidence"]
|
102 |
|
103 |
# Compute onset strength to get a measure of rhythm intensity
|
104 |
rhythm_intensity = np.mean(onset_env) / np.max(onset_env) if np.max(onset_env) > 0 else 0
|
|
|
106 |
# Rhythm complexity based on variation in onset strength
|
107 |
rhythm_complexity = np.std(onset_env) / np.mean(onset_env) if np.mean(onset_env) > 0 else 0
|
108 |
|
109 |
+
# Convert numpy arrays to regular Python types for JSON serialization
|
110 |
+
beat_times_list = [float(t) for t in beat_times.tolist()]
|
111 |
+
beat_intervals_list = [float(i) for i in beat_intervals.tolist()]
|
112 |
+
|
113 |
return {
|
114 |
"tempo": float(tempo),
|
115 |
+
"beat_times": beat_times_list,
|
116 |
+
"beat_intervals": beat_intervals_list,
|
117 |
"beat_regularity": float(beat_regularity),
|
118 |
"rhythm_intensity": float(rhythm_intensity),
|
119 |
"rhythm_complexity": float(rhythm_complexity),
|
120 |
+
"estimated_time_signature": estimated_signature,
|
121 |
+
"time_signature_confidence": float(time_sig_confidence),
|
122 |
+
"time_signature_candidates": time_sig_result.get("all_candidates", {})
|
123 |
}
|
124 |
|
125 |
+
def _detect_time_signature(self, y, sr):
|
126 |
+
"""
|
127 |
+
Multi-method approach to time signature detection
|
128 |
+
|
129 |
+
Args:
|
130 |
+
y: Audio signal
|
131 |
+
sr: Sample rate
|
132 |
+
|
133 |
+
Returns:
|
134 |
+
dict with detected time signature and confidence
|
135 |
+
"""
|
136 |
+
# 1. Compute onset envelope and beat positions
|
137 |
+
onset_env = librosa.onset.onset_strength(y=y, sr=sr, hop_length=512)
|
138 |
+
|
139 |
+
# Get tempo and beat frames
|
140 |
+
tempo, beat_frames = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
|
141 |
+
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
|
142 |
+
|
143 |
+
# Return default if not enough beats detected
|
144 |
+
if len(beat_times) < 8:
|
145 |
+
return {"time_signature": "4/4", "confidence": 0.5}
|
146 |
+
|
147 |
+
# 2. Extract beat strengths and normalize
|
148 |
+
beat_strengths = self._get_beat_strengths(y, sr, beat_times, onset_env)
|
149 |
+
|
150 |
+
# 3. Compute various time signature features using different methods
|
151 |
+
results = {}
|
152 |
+
|
153 |
+
# Method 1: Beat pattern autocorrelation
|
154 |
+
autocorr_result = self._detect_by_autocorrelation(onset_env, sr)
|
155 |
+
results["autocorrelation"] = autocorr_result
|
156 |
+
|
157 |
+
# Method 2: Beat strength pattern matching
|
158 |
+
pattern_result = self._detect_by_pattern_matching(beat_strengths)
|
159 |
+
results["pattern_matching"] = pattern_result
|
160 |
+
|
161 |
+
# Method 3: Spectral rhythmic analysis
|
162 |
+
spectral_result = self._detect_by_spectral_analysis(onset_env, sr)
|
163 |
+
results["spectral"] = spectral_result
|
164 |
+
|
165 |
+
# Method 4: Note density analysis
|
166 |
+
density_result = self._detect_by_note_density(y, sr, beat_times)
|
167 |
+
results["note_density"] = density_result
|
168 |
+
|
169 |
+
# Method 5: Tempo-based estimation
|
170 |
+
tempo_result = self._estimate_from_tempo(tempo)
|
171 |
+
results["tempo_based"] = tempo_result
|
172 |
+
|
173 |
+
# 4. Combine results with weighted voting
|
174 |
+
final_result = self._combine_detection_results(results, tempo)
|
175 |
+
|
176 |
+
return final_result
|
177 |
+
|
178 |
+
def _get_beat_strengths(self, y, sr, beat_times, onset_env):
|
179 |
+
"""Extract normalized strengths at beat positions"""
|
180 |
+
# Convert beat times to frames
|
181 |
+
beat_frames = librosa.time_to_frames(beat_times, sr=sr, hop_length=512)
|
182 |
+
beat_frames = [min(f, len(onset_env)-1) for f in beat_frames]
|
183 |
+
|
184 |
+
# Get beat strengths from onset envelope
|
185 |
+
beat_strengths = np.array([onset_env[f] for f in beat_frames])
|
186 |
+
|
187 |
+
# Also look at energy and spectral flux at beat positions
|
188 |
+
hop_length = 512
|
189 |
+
frame_length = 2048
|
190 |
+
|
191 |
+
# Get energy at each beat
|
192 |
+
energy = librosa.feature.rms(y=y, frame_length=frame_length, hop_length=hop_length)[0]
|
193 |
+
beat_energy = np.array([energy[min(f, len(energy)-1)] for f in beat_frames])
|
194 |
+
|
195 |
+
# Combine onset strength with energy (weighted average)
|
196 |
+
beat_strengths = 0.7 * beat_strengths + 0.3 * beat_energy
|
197 |
+
|
198 |
+
# Normalize
|
199 |
+
if np.max(beat_strengths) > 0:
|
200 |
+
beat_strengths = beat_strengths / np.max(beat_strengths)
|
201 |
+
|
202 |
+
return beat_strengths
|
203 |
+
|
204 |
+
def _detect_by_autocorrelation(self, onset_env, sr):
|
205 |
+
"""Detect meter using autocorrelation of onset strength"""
|
206 |
+
# Calculate autocorrelation of onset envelope
|
207 |
+
hop_length = 512
|
208 |
+
ac = librosa.autocorrelate(onset_env, max_size=4 * sr // hop_length)
|
209 |
+
ac = librosa.util.normalize(ac)
|
210 |
+
|
211 |
+
# Find significant peaks in autocorrelation
|
212 |
+
peaks = signal.find_peaks(ac, height=0.2, distance=sr//(8*hop_length))[0]
|
213 |
+
|
214 |
+
if len(peaks) < 2:
|
215 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
216 |
+
|
217 |
+
# Analyze peak intervals in terms of beats
|
218 |
+
peak_intervals = np.diff(peaks)
|
219 |
+
|
220 |
+
# Convert peaks to time
|
221 |
+
peak_times = peaks * hop_length / sr
|
222 |
+
|
223 |
+
# Analyze for common time signature patterns
|
224 |
+
time_sig_votes = {}
|
225 |
+
|
226 |
+
# Check if peaks match expected bar lengths
|
227 |
+
for ts, info in self.common_time_signatures.items():
|
228 |
+
beats_per_bar = info["beats_per_bar"]
|
229 |
+
|
230 |
+
# Check how well peaks match this meter
|
231 |
+
score = 0
|
232 |
+
for interval in peak_intervals:
|
233 |
+
# Check if this interval corresponds to this time signature
|
234 |
+
# Allow some tolerance around the expected value
|
235 |
+
expected = beats_per_bar * (hop_length / sr) # in seconds
|
236 |
+
tolerance = 0.25 * expected
|
237 |
+
|
238 |
+
if abs(interval * hop_length / sr - expected) < tolerance:
|
239 |
+
score += 1
|
240 |
+
|
241 |
+
if len(peak_intervals) > 0:
|
242 |
+
time_sig_votes[ts] = score / len(peak_intervals)
|
243 |
+
|
244 |
+
# Return most likely time signature
|
245 |
+
if time_sig_votes:
|
246 |
+
best_ts = max(time_sig_votes.items(), key=lambda x: x[1])
|
247 |
+
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
248 |
+
|
249 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
250 |
+
|
251 |
+
def _detect_by_pattern_matching(self, beat_strengths):
|
252 |
+
"""Match beat strength patterns against known time signature patterns"""
|
253 |
+
if len(beat_strengths) < 6:
|
254 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
255 |
+
|
256 |
+
results = {}
|
257 |
+
|
258 |
+
# Try each possible time signature
|
259 |
+
for ts, info in self.common_time_signatures.items():
|
260 |
+
beats_per_bar = info["beats_per_bar"]
|
261 |
+
expected_pattern = info["beat_pattern"]
|
262 |
+
|
263 |
+
# Calculate correlation scores for overlapping segments
|
264 |
+
scores = []
|
265 |
+
|
266 |
+
# We need at least one complete pattern
|
267 |
+
if len(beat_strengths) >= beats_per_bar:
|
268 |
+
# Try different offsets to find best alignment
|
269 |
+
for offset in range(min(beats_per_bar, len(beat_strengths) - beats_per_bar + 1)):
|
270 |
+
# Calculate scores for each complete pattern
|
271 |
+
pattern_scores = []
|
272 |
+
|
273 |
+
for i in range(offset, len(beat_strengths) - beats_per_bar + 1, beats_per_bar):
|
274 |
+
segment = beat_strengths[i:i+beats_per_bar]
|
275 |
+
|
276 |
+
# If expected pattern is longer than segment, truncate it
|
277 |
+
pattern = expected_pattern[:len(segment)]
|
278 |
+
|
279 |
+
# Normalize segment and pattern
|
280 |
+
if np.std(segment) > 0 and np.std(pattern) > 0:
|
281 |
+
# Calculate correlation
|
282 |
+
corr = np.corrcoef(segment, pattern)[0, 1]
|
283 |
+
if not np.isnan(corr):
|
284 |
+
pattern_scores.append(corr)
|
285 |
+
|
286 |
+
if pattern_scores:
|
287 |
+
scores.append(np.mean(pattern_scores))
|
288 |
+
|
289 |
+
# Use the best score among different offsets
|
290 |
+
if scores:
|
291 |
+
confidence = max(scores)
|
292 |
+
results[ts] = confidence
|
293 |
+
|
294 |
+
# Find best match
|
295 |
+
if results:
|
296 |
+
best_ts = max(results.items(), key=lambda x: x[1])
|
297 |
+
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
298 |
+
|
299 |
+
# Default
|
300 |
+
return {"time_signature": "4/4", "confidence": 0.5}
|
301 |
+
|
302 |
+
def _detect_by_spectral_analysis(self, onset_env, sr):
|
303 |
+
"""Analyze rhythm in frequency domain"""
|
304 |
+
# Get rhythm periodicity through Fourier Transform
|
305 |
+
# Focus on periods corresponding to typical bar lengths (1-8 seconds)
|
306 |
+
hop_length = 512
|
307 |
+
|
308 |
+
# Calculate rhythm periodicity
|
309 |
+
fft_size = 2**13 # Large enough to give good frequency resolution
|
310 |
+
S = np.abs(np.fft.rfft(onset_env, n=fft_size))
|
311 |
+
|
312 |
+
# Convert frequency to tempo in BPM
|
313 |
+
freqs = np.fft.rfftfreq(fft_size, d=hop_length/sr)
|
314 |
+
tempos = 60 * freqs
|
315 |
+
|
316 |
+
# Focus on reasonable tempo range (40-240 BPM)
|
317 |
+
tempo_mask = (tempos >= 40) & (tempos <= 240)
|
318 |
+
S_tempo = S[tempo_mask]
|
319 |
+
tempos = tempos[tempo_mask]
|
320 |
+
|
321 |
+
# Find peaks in spectrum
|
322 |
+
peaks = signal.find_peaks(S_tempo, height=np.max(S_tempo)*0.1, distance=5)[0]
|
323 |
+
|
324 |
if len(peaks) == 0:
|
325 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
326 |
+
|
327 |
+
# Get peak tempos and strengths
|
328 |
+
peak_tempos = tempos[peaks]
|
329 |
+
peak_strengths = S_tempo[peaks]
|
330 |
+
|
331 |
+
# Sort by strength
|
332 |
+
peak_indices = np.argsort(peak_strengths)[::-1]
|
333 |
+
peak_tempos = peak_tempos[peak_indices]
|
334 |
+
peak_strengths = peak_strengths[peak_indices]
|
335 |
+
|
336 |
+
# Analyze relationships between peaks
|
337 |
+
# For example, 3/4 typically has peaks at multiples of 3 beats
|
338 |
+
# 4/4 has peaks at multiples of 4 beats
|
339 |
+
|
340 |
+
time_sig_scores = {}
|
341 |
+
|
342 |
+
# Check relationships between top peaks
|
343 |
+
if len(peak_tempos) >= 2:
|
344 |
+
tempo_ratios = []
|
345 |
+
for i in range(len(peak_tempos)):
|
346 |
+
for j in range(i+1, len(peak_tempos)):
|
347 |
+
if peak_tempos[j] > 0:
|
348 |
+
ratio = peak_tempos[i] / peak_tempos[j]
|
349 |
+
tempo_ratios.append(ratio)
|
350 |
+
|
351 |
+
# Check for patterns indicative of different time signatures
|
352 |
+
for ts in self.common_time_signatures:
|
353 |
+
score = 0
|
354 |
+
|
355 |
+
if ts == "4/4" or ts == "2/4":
|
356 |
+
# Look for ratios close to 2 or 4
|
357 |
+
for ratio in tempo_ratios:
|
358 |
+
if abs(ratio - 2) < 0.2 or abs(ratio - 4) < 0.2:
|
359 |
+
score += 1
|
360 |
+
|
361 |
+
elif ts == "3/4" or ts == "6/8":
|
362 |
+
# Look for ratios close to 3 or 6
|
363 |
+
for ratio in tempo_ratios:
|
364 |
+
if abs(ratio - 3) < 0.2 or abs(ratio - 6) < 0.3:
|
365 |
+
score += 1
|
366 |
+
|
367 |
+
# Normalize score
|
368 |
+
if tempo_ratios:
|
369 |
+
time_sig_scores[ts] = min(1.0, score / len(tempo_ratios) + 0.4)
|
370 |
+
|
371 |
+
# If we have meaningful scores, return best match
|
372 |
+
if time_sig_scores:
|
373 |
+
best_ts = max(time_sig_scores.items(), key=lambda x: x[1])
|
374 |
+
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
375 |
+
|
376 |
+
# Default fallback
|
377 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
378 |
+
|
379 |
+
def _detect_by_note_density(self, y, sr, beat_times):
|
380 |
+
"""Analyze note density patterns between beats"""
|
381 |
+
if len(beat_times) < 6:
|
382 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
383 |
+
|
384 |
+
# Extract note onsets (not just beats)
|
385 |
+
onset_times = librosa.onset.onset_detect(y=y, sr=sr, units='time')
|
386 |
+
|
387 |
+
if len(onset_times) < len(beat_times):
|
388 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
389 |
+
|
390 |
+
# Count onsets between consecutive beats
|
391 |
+
note_counts = []
|
392 |
+
for i in range(len(beat_times) - 1):
|
393 |
+
start = beat_times[i]
|
394 |
+
end = beat_times[i+1]
|
395 |
+
|
396 |
+
# Count onsets in this beat
|
397 |
+
count = sum(1 for t in onset_times if start <= t < end)
|
398 |
+
note_counts.append(count)
|
399 |
+
|
400 |
+
# Look for repeating patterns in the note counts
|
401 |
+
time_sig_scores = {}
|
402 |
+
|
403 |
+
for ts, info in self.common_time_signatures.items():
|
404 |
+
beats_per_bar = info["beats_per_bar"]
|
405 |
+
|
406 |
+
# Skip if we don't have enough data
|
407 |
+
if len(note_counts) < beats_per_bar:
|
408 |
+
continue
|
409 |
+
|
410 |
+
# Calculate pattern similarity for this time signature
|
411 |
+
scores = []
|
412 |
+
|
413 |
+
for offset in range(min(beats_per_bar, len(note_counts) - beats_per_bar + 1)):
|
414 |
+
similarities = []
|
415 |
+
|
416 |
+
for i in range(offset, len(note_counts) - beats_per_bar + 1, beats_per_bar):
|
417 |
+
# Get current bar pattern
|
418 |
+
pattern = note_counts[i:i+beats_per_bar]
|
419 |
+
|
420 |
+
# Compare with expected density pattern
|
421 |
+
expected = self.rhythm_density.get(ts, [1.0] * beats_per_bar)
|
422 |
+
expected = expected[:len(pattern)] # Truncate if needed
|
423 |
+
|
424 |
+
# Normalize both patterns
|
425 |
+
if sum(pattern) > 0 and sum(expected) > 0:
|
426 |
+
pattern_norm = [p/max(1, sum(pattern)) for p in pattern]
|
427 |
+
expected_norm = [e/sum(expected) for e in expected]
|
428 |
+
|
429 |
+
# Calculate similarity (1 - distance)
|
430 |
+
distance = sum(abs(p - e) for p, e in zip(pattern_norm, expected_norm)) / len(pattern)
|
431 |
+
similarity = 1 - min(1.0, distance)
|
432 |
+
similarities.append(similarity)
|
433 |
+
|
434 |
+
if similarities:
|
435 |
+
scores.append(np.mean(similarities))
|
436 |
+
|
437 |
+
# Use the best score
|
438 |
+
if scores:
|
439 |
+
time_sig_scores[ts] = max(scores)
|
440 |
+
|
441 |
+
# Return best match
|
442 |
+
if time_sig_scores:
|
443 |
+
best_ts = max(time_sig_scores.items(), key=lambda x: x[1])
|
444 |
+
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
445 |
+
|
446 |
+
# Default
|
447 |
+
return {"time_signature": "4/4", "confidence": 0.4}
|
448 |
+
|
449 |
+
def _estimate_from_tempo(self, tempo):
|
450 |
+
"""Use tempo to help estimate likely time signature"""
|
451 |
+
# Statistical tendencies: slower tempos often in compound meters (6/8, 12/8)
|
452 |
+
# Very fast tempos often counted in cut time (2/2 instead of 4/4)
|
453 |
+
|
454 |
+
scores = {}
|
455 |
+
|
456 |
+
if tempo < 70:
|
457 |
+
# Slow tempos favor compound meters
|
458 |
+
scores = {
|
459 |
+
"4/4": 0.4,
|
460 |
+
"3/4": 0.5,
|
461 |
+
"6/8": 0.7,
|
462 |
+
"12/8": 0.6
|
463 |
+
}
|
464 |
+
elif 70 <= tempo <= 120:
|
465 |
+
# Medium tempos favor 4/4, 3/4
|
466 |
+
scores = {
|
467 |
+
"4/4": 0.7,
|
468 |
+
"3/4": 0.6,
|
469 |
+
"2/4": 0.4,
|
470 |
+
"6/8": 0.5
|
471 |
+
}
|
472 |
else:
|
473 |
+
# Fast tempos favor simpler meters
|
474 |
+
scores = {
|
475 |
+
"4/4": 0.6,
|
476 |
+
"2/4": 0.7,
|
477 |
+
"2/2": 0.6,
|
478 |
+
"3/4": 0.4
|
479 |
+
}
|
480 |
+
|
481 |
+
# Find best match
|
482 |
+
best_ts = max(scores.items(), key=lambda x: x[1])
|
483 |
+
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
|
484 |
+
|
485 |
+
def _combine_detection_results(self, results, tempo):
|
486 |
+
"""Combine results from different detection methods"""
|
487 |
+
# Define weights for different methods
|
488 |
+
method_weights = {
|
489 |
+
"autocorrelation": 0.25,
|
490 |
+
"pattern_matching": 0.30,
|
491 |
+
"spectral": 0.20,
|
492 |
+
"note_density": 0.20,
|
493 |
+
"tempo_based": 0.05
|
494 |
+
}
|
495 |
+
|
496 |
+
# Prior probability (based on frequency in music)
|
497 |
+
prior_weights = {ts: info["weight"] for ts, info in self.common_time_signatures.items()}
|
498 |
+
|
499 |
+
# Combine votes
|
500 |
+
total_votes = {ts: prior_weights.get(ts, 0.1) for ts in self.common_time_signatures}
|
501 |
+
|
502 |
+
for method, result in results.items():
|
503 |
+
ts = result["time_signature"]
|
504 |
+
confidence = result["confidence"]
|
505 |
+
weight = method_weights.get(method, 0.1)
|
506 |
+
|
507 |
+
# Add weighted vote
|
508 |
+
if ts in total_votes:
|
509 |
+
total_votes[ts] += confidence * weight
|
510 |
+
else:
|
511 |
+
total_votes[ts] = confidence * weight
|
512 |
+
|
513 |
+
# Special case: disambiguate between 3/4 and 6/8
|
514 |
+
if "3/4" in total_votes and "6/8" in total_votes:
|
515 |
+
# If the two are close, use tempo to break tie
|
516 |
+
if abs(total_votes["3/4"] - total_votes["6/8"]) < 0.1:
|
517 |
+
if tempo < 100: # Slower tempo favors 6/8
|
518 |
+
total_votes["6/8"] += 0.1
|
519 |
+
else: # Faster tempo favors 3/4
|
520 |
+
total_votes["3/4"] += 0.1
|
521 |
+
|
522 |
+
# Get highest scoring time signature
|
523 |
+
best_ts = max(total_votes.items(), key=lambda x: x[1])
|
524 |
+
|
525 |
+
# Calculate confidence score (normalize to 0-1)
|
526 |
+
confidence = best_ts[1] / (sum(total_votes.values()) + 0.001)
|
527 |
+
confidence = min(0.95, max(0.4, confidence)) # Bound confidence
|
528 |
+
|
529 |
+
return {
|
530 |
+
"time_signature": best_ts[0],
|
531 |
+
"confidence": confidence,
|
532 |
+
"all_candidates": {ts: float(score) for ts, score in total_votes.items()}
|
533 |
+
}
|
534 |
+
|
535 |
+
def _evaluate_beat_pattern(self, beat_strengths, pattern_length):
|
536 |
+
"""
|
537 |
+
Evaluate how consistently a specific pattern length fits the beat strengths
|
538 |
+
|
539 |
+
Args:
|
540 |
+
beat_strengths: Array of normalized beat strengths
|
541 |
+
pattern_length: Length of pattern to evaluate
|
542 |
+
|
543 |
+
Returns:
|
544 |
+
score: How well this pattern length explains the data (0-1)
|
545 |
+
"""
|
546 |
+
if len(beat_strengths) < pattern_length * 2:
|
547 |
+
return 0.0
|
548 |
+
|
549 |
+
# Calculate correlation between consecutive patterns
|
550 |
+
correlations = []
|
551 |
+
|
552 |
+
num_full_patterns = len(beat_strengths) // pattern_length
|
553 |
+
for i in range(num_full_patterns - 1):
|
554 |
+
pattern1 = beat_strengths[i*pattern_length:(i+1)*pattern_length]
|
555 |
+
pattern2 = beat_strengths[(i+1)*pattern_length:(i+2)*pattern_length]
|
556 |
+
|
557 |
+
# Calculate similarity between consecutive patterns
|
558 |
+
if len(pattern1) == len(pattern2) and len(pattern1) > 0:
|
559 |
+
corr = np.corrcoef(pattern1, pattern2)[0, 1]
|
560 |
+
if not np.isnan(corr):
|
561 |
+
correlations.append(corr)
|
562 |
+
|
563 |
+
# Calculate variance of beat strengths within each position
|
564 |
+
variance_score = 0
|
565 |
+
if num_full_patterns >= 2:
|
566 |
+
position_values = [[] for _ in range(pattern_length)]
|
567 |
+
|
568 |
+
for i in range(num_full_patterns):
|
569 |
+
for pos in range(pattern_length):
|
570 |
+
idx = i * pattern_length + pos
|
571 |
+
if idx < len(beat_strengths):
|
572 |
+
position_values[pos].append(beat_strengths[idx])
|
573 |
+
|
574 |
+
# Calculate variance ratio (higher means consistent accent patterns)
|
575 |
+
between_pos_var = np.var([np.mean(vals) for vals in position_values if vals])
|
576 |
+
within_pos_var = np.mean([np.var(vals) for vals in position_values if len(vals) > 1])
|
577 |
+
|
578 |
+
if within_pos_var > 0:
|
579 |
+
variance_score = between_pos_var / within_pos_var
|
580 |
+
variance_score = min(1.0, variance_score / 2.0) # Normalize
|
581 |
+
|
582 |
+
# Combine correlation and variance scores
|
583 |
+
if correlations:
|
584 |
+
correlation_score = np.mean(correlations)
|
585 |
+
return 0.7 * correlation_score + 0.3 * variance_score
|
586 |
+
|
587 |
+
return 0.5 * variance_score # Lower confidence if we couldn't calculate correlations
|
588 |
+
|
589 |
+
def _extract_average_pattern(self, beat_strengths, pattern_length):
|
590 |
+
"""
|
591 |
+
Extract the average beat pattern of specified length
|
592 |
+
|
593 |
+
Args:
|
594 |
+
beat_strengths: Array of beat strengths
|
595 |
+
pattern_length: Length of pattern to extract
|
596 |
+
|
597 |
+
Returns:
|
598 |
+
Average pattern of the specified length
|
599 |
+
"""
|
600 |
+
if len(beat_strengths) < pattern_length:
|
601 |
+
return np.array([])
|
602 |
+
|
603 |
+
# Number of complete patterns
|
604 |
+
num_patterns = len(beat_strengths) // pattern_length
|
605 |
+
|
606 |
+
if num_patterns == 0:
|
607 |
+
return np.array([])
|
608 |
+
|
609 |
+
# Reshape to stack patterns and calculate average
|
610 |
+
patterns = beat_strengths[:num_patterns * pattern_length].reshape((num_patterns, pattern_length))
|
611 |
+
return np.mean(patterns, axis=0)
|
612 |
|
613 |
def analyze_tonality(self, y, sr):
|
614 |
"""Analyze tonal features: key, mode, harmonic features"""
|
|
|
857 |
emotion_data = self.analyze_emotion(rhythm_data, tonal_data, energy_data)
|
858 |
theme_data = self.analyze_theme(rhythm_data, tonal_data, emotion_data)
|
859 |
|
860 |
+
# Convert any remaining numpy values to native Python types
|
861 |
+
def convert_numpy_to_python(obj):
|
862 |
+
if isinstance(obj, dict):
|
863 |
+
return {k: convert_numpy_to_python(v) for k, v in obj.items()}
|
864 |
+
elif isinstance(obj, list):
|
865 |
+
return [convert_numpy_to_python(item) for item in obj]
|
866 |
+
elif isinstance(obj, np.ndarray):
|
867 |
+
return obj.tolist()
|
868 |
+
elif isinstance(obj, np.number):
|
869 |
+
return float(obj)
|
870 |
+
else:
|
871 |
+
return obj
|
872 |
+
|
873 |
+
# Ensure all numpy values are converted
|
874 |
+
rhythm_data = convert_numpy_to_python(rhythm_data)
|
875 |
+
tonal_data = convert_numpy_to_python(tonal_data)
|
876 |
+
energy_data = convert_numpy_to_python(energy_data)
|
877 |
+
emotion_data = convert_numpy_to_python(emotion_data)
|
878 |
+
theme_data = convert_numpy_to_python(theme_data)
|
879 |
+
|
880 |
# Combine all results
|
881 |
return {
|
882 |
"file": file_path,
|
|
|
886 |
"emotion_analysis": emotion_data,
|
887 |
"theme_analysis": theme_data,
|
888 |
"summary": {
|
889 |
+
"tempo": float(rhythm_data["tempo"]),
|
890 |
"time_signature": rhythm_data["estimated_time_signature"],
|
891 |
"key": tonal_data["key"],
|
892 |
"mode": tonal_data["mode"],
|
requirements.txt
CHANGED
@@ -13,4 +13,3 @@ scipy>=1.12.0
|
|
13 |
soundfile>=0.12.1
|
14 |
matplotlib>=3.7.0
|
15 |
pronouncing>=0.2.0
|
16 |
-
pyannote.audio>=2.1.1
|
|
|
13 |
soundfile>=0.12.1
|
14 |
matplotlib>=3.7.0
|
15 |
pronouncing>=0.2.0
|
|