root
commited on
Commit
·
00af04f
1
Parent(s):
4af3315
showastresult
Browse files- app.py +74 -35
- example.py +29 -18
app.py
CHANGED
|
@@ -104,22 +104,29 @@ music_analyzer = MusicAnalyzer()
|
|
| 104 |
|
| 105 |
def extract_audio_features(audio_file):
|
| 106 |
"""Extract audio features from an audio file."""
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
def classify_genre(audio_data):
|
| 125 |
"""Classify the genre of the audio using the loaded model."""
|
|
@@ -313,27 +320,46 @@ def process_audio(audio_file):
|
|
| 313 |
audio_data = extract_audio_features(audio_file)
|
| 314 |
|
| 315 |
# First check if it's music
|
| 316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
if not is_music:
|
| 318 |
-
return "The uploaded audio does not appear to be music. Please upload a music file.", None,
|
| 319 |
|
| 320 |
# Classify genre
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
# Analyze music emotions and themes
|
| 327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
# Generate lyrics based on top genre and emotion analysis
|
| 330 |
-
|
| 331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
|
| 333 |
return genre_results, lyrics, ast_results
|
| 334 |
|
| 335 |
except Exception as e:
|
| 336 |
-
|
|
|
|
|
|
|
| 337 |
|
| 338 |
# Create Gradio interface
|
| 339 |
with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
|
|
@@ -359,21 +385,34 @@ with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
|
|
| 359 |
# Process audio and get genre, lyrics, and AST results
|
| 360 |
genre_results, lyrics, ast_results = process_audio(audio_file)
|
| 361 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
# Format emotion analysis results
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
# Format AST classification results
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
|
|
|
|
|
|
|
|
|
| 373 |
|
| 374 |
return genre_results, emotion_text, ast_text, lyrics
|
| 375 |
except Exception as e:
|
| 376 |
-
|
|
|
|
|
|
|
| 377 |
|
| 378 |
submit_btn.click(
|
| 379 |
fn=display_results,
|
|
|
|
| 104 |
|
| 105 |
def extract_audio_features(audio_file):
|
| 106 |
"""Extract audio features from an audio file."""
|
| 107 |
+
try:
|
| 108 |
+
# Load the audio file using utility function
|
| 109 |
+
y, sr = load_audio(audio_file, SAMPLE_RATE)
|
| 110 |
+
|
| 111 |
+
if y is None or sr is None:
|
| 112 |
+
raise ValueError("Failed to load audio data")
|
| 113 |
+
|
| 114 |
+
# Get audio duration in seconds
|
| 115 |
+
duration = extract_audio_duration(y, sr)
|
| 116 |
+
|
| 117 |
+
# Extract MFCCs for genre classification (may not be needed with the pipeline)
|
| 118 |
+
mfccs_mean = extract_mfcc_features(y, sr, n_mfcc=20)
|
| 119 |
+
|
| 120 |
+
return {
|
| 121 |
+
"features": mfccs_mean,
|
| 122 |
+
"duration": duration,
|
| 123 |
+
"waveform": y,
|
| 124 |
+
"sample_rate": sr,
|
| 125 |
+
"path": audio_file # Keep path for the pipeline
|
| 126 |
+
}
|
| 127 |
+
except Exception as e:
|
| 128 |
+
print(f"Error extracting audio features: {str(e)}")
|
| 129 |
+
raise ValueError(f"Failed to extract audio features: {str(e)}")
|
| 130 |
|
| 131 |
def classify_genre(audio_data):
|
| 132 |
"""Classify the genre of the audio using the loaded model."""
|
|
|
|
| 320 |
audio_data = extract_audio_features(audio_file)
|
| 321 |
|
| 322 |
# First check if it's music
|
| 323 |
+
try:
|
| 324 |
+
is_music, ast_results = detect_music(audio_data)
|
| 325 |
+
except Exception as e:
|
| 326 |
+
print(f"Error in music detection: {str(e)}")
|
| 327 |
+
return f"Error in music detection: {str(e)}", None, []
|
| 328 |
+
|
| 329 |
if not is_music:
|
| 330 |
+
return "The uploaded audio does not appear to be music. Please upload a music file.", None, ast_results
|
| 331 |
|
| 332 |
# Classify genre
|
| 333 |
+
try:
|
| 334 |
+
top_genres = classify_genre(audio_data)
|
| 335 |
+
# Format genre results using utility function
|
| 336 |
+
genre_results = format_genre_results(top_genres)
|
| 337 |
+
except Exception as e:
|
| 338 |
+
print(f"Error in genre classification: {str(e)}")
|
| 339 |
+
return f"Error in genre classification: {str(e)}", None, ast_results
|
| 340 |
|
| 341 |
# Analyze music emotions and themes
|
| 342 |
+
try:
|
| 343 |
+
emotion_results = music_analyzer.analyze_music(audio_file)
|
| 344 |
+
except Exception as e:
|
| 345 |
+
print(f"Error in emotion analysis: {str(e)}")
|
| 346 |
+
# Continue even if emotion analysis fails
|
| 347 |
+
emotion_results = {"summary": {"tempo": 0, "key": "Unknown", "mode": "", "primary_emotion": "Unknown", "primary_theme": "Unknown"}}
|
| 348 |
|
| 349 |
# Generate lyrics based on top genre and emotion analysis
|
| 350 |
+
try:
|
| 351 |
+
primary_genre, _ = top_genres[0]
|
| 352 |
+
lyrics = generate_lyrics(primary_genre, audio_data["duration"], emotion_results)
|
| 353 |
+
except Exception as e:
|
| 354 |
+
print(f"Error generating lyrics: {str(e)}")
|
| 355 |
+
lyrics = f"Error generating lyrics: {str(e)}"
|
| 356 |
|
| 357 |
return genre_results, lyrics, ast_results
|
| 358 |
|
| 359 |
except Exception as e:
|
| 360 |
+
error_msg = f"Error processing audio: {str(e)}"
|
| 361 |
+
print(error_msg)
|
| 362 |
+
return error_msg, None, []
|
| 363 |
|
| 364 |
# Create Gradio interface
|
| 365 |
with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
|
|
|
|
| 385 |
# Process audio and get genre, lyrics, and AST results
|
| 386 |
genre_results, lyrics, ast_results = process_audio(audio_file)
|
| 387 |
|
| 388 |
+
# Check if we got an error message instead of results
|
| 389 |
+
if isinstance(genre_results, str) and genre_results.startswith("Error"):
|
| 390 |
+
return genre_results, "Error in emotion analysis", "Error in audio classification", None
|
| 391 |
+
|
| 392 |
# Format emotion analysis results
|
| 393 |
+
try:
|
| 394 |
+
emotion_results = music_analyzer.analyze_music(audio_file)
|
| 395 |
+
emotion_text = f"Tempo: {emotion_results['summary']['tempo']:.1f} BPM\n"
|
| 396 |
+
emotion_text += f"Key: {emotion_results['summary']['key']} {emotion_results['summary']['mode']}\n"
|
| 397 |
+
emotion_text += f"Primary Emotion: {emotion_results['summary']['primary_emotion']}\n"
|
| 398 |
+
emotion_text += f"Primary Theme: {emotion_results['summary']['primary_theme']}"
|
| 399 |
+
except Exception as e:
|
| 400 |
+
print(f"Error in emotion analysis: {str(e)}")
|
| 401 |
+
emotion_text = f"Error in emotion analysis: {str(e)}"
|
| 402 |
|
| 403 |
# Format AST classification results
|
| 404 |
+
if ast_results and isinstance(ast_results, list):
|
| 405 |
+
ast_text = "Audio Classification Results (AST Model):\n"
|
| 406 |
+
for result in ast_results[:5]: # Show top 5 results
|
| 407 |
+
ast_text += f"{result['label']}: {result['score']*100:.2f}%\n"
|
| 408 |
+
else:
|
| 409 |
+
ast_text = "No valid audio classification results available."
|
| 410 |
|
| 411 |
return genre_results, emotion_text, ast_text, lyrics
|
| 412 |
except Exception as e:
|
| 413 |
+
error_msg = f"Error: {str(e)}"
|
| 414 |
+
print(error_msg)
|
| 415 |
+
return error_msg, "Error in emotion analysis", "Error in audio classification", None
|
| 416 |
|
| 417 |
submit_btn.click(
|
| 418 |
fn=display_results,
|
example.py
CHANGED
|
@@ -23,33 +23,44 @@ def main():
|
|
| 23 |
# Call the main processing function
|
| 24 |
genre_results, lyrics, ast_results = process_audio(audio_file)
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
print("\n" + "="*50)
|
| 31 |
-
print("GENRE CLASSIFICATION RESULTS:")
|
| 32 |
-
print("="*50)
|
| 33 |
-
print(genre_results)
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
print("\n" + "="*50)
|
| 44 |
print("AUDIO CLASSIFICATION RESULTS (AST):")
|
| 45 |
print("="*50)
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
print("\n" + "="*50)
|
| 50 |
print("GENERATED LYRICS:")
|
| 51 |
print("="*50)
|
| 52 |
-
print(lyrics)
|
| 53 |
|
| 54 |
if __name__ == "__main__":
|
| 55 |
main()
|
|
|
|
| 23 |
# Call the main processing function
|
| 24 |
genre_results, lyrics, ast_results = process_audio(audio_file)
|
| 25 |
|
| 26 |
+
# Check if we got an error message
|
| 27 |
+
if isinstance(genre_results, str) and genre_results.startswith("Error"):
|
| 28 |
+
print(f"Error processing audio: {genre_results}")
|
| 29 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
# Get emotion analysis results
|
| 32 |
+
try:
|
| 33 |
+
emotion_results = music_analyzer.analyze_music(audio_file)
|
| 34 |
+
|
| 35 |
+
# Print results
|
| 36 |
+
print("\n" + "="*50)
|
| 37 |
+
print("GENRE CLASSIFICATION RESULTS:")
|
| 38 |
+
print("="*50)
|
| 39 |
+
print(genre_results)
|
| 40 |
+
|
| 41 |
+
print("\n" + "="*50)
|
| 42 |
+
print("EMOTION ANALYSIS RESULTS:")
|
| 43 |
+
print("="*50)
|
| 44 |
+
print(f"Tempo: {emotion_results['summary']['tempo']:.1f} BPM")
|
| 45 |
+
print(f"Key: {emotion_results['summary']['key']} {emotion_results['summary']['mode']}")
|
| 46 |
+
print(f"Primary Emotion: {emotion_results['summary']['primary_emotion']}")
|
| 47 |
+
print(f"Primary Theme: {emotion_results['summary']['primary_theme']}")
|
| 48 |
+
except Exception as e:
|
| 49 |
+
print(f"\nError in emotion analysis: {str(e)}")
|
| 50 |
|
| 51 |
print("\n" + "="*50)
|
| 52 |
print("AUDIO CLASSIFICATION RESULTS (AST):")
|
| 53 |
print("="*50)
|
| 54 |
+
if ast_results and isinstance(ast_results, list) and len(ast_results) > 0:
|
| 55 |
+
for result in ast_results[:5]: # Show top 5 results
|
| 56 |
+
print(f"{result['label']}: {result['score']*100:.2f}%")
|
| 57 |
+
else:
|
| 58 |
+
print("No audio classification results available.")
|
| 59 |
|
| 60 |
print("\n" + "="*50)
|
| 61 |
print("GENERATED LYRICS:")
|
| 62 |
print("="*50)
|
| 63 |
+
print(lyrics if lyrics else "No lyrics generated.")
|
| 64 |
|
| 65 |
if __name__ == "__main__":
|
| 66 |
main()
|