root
commited on
Commit
·
7dfa01d
1
Parent(s):
bc74a52
ss
Browse files- app.py +30 -8
- requirements.txt +2 -1
- utils.py +41 -6
app.py
CHANGED
|
@@ -4,9 +4,10 @@ import gradio as gr
|
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
| 6 |
from transformers import (
|
| 7 |
-
AutoModelForSequenceClassification,
|
| 8 |
-
|
| 9 |
-
|
|
|
|
| 10 |
AutoModelForCausalLM,
|
| 11 |
BitsAndBytesConfig
|
| 12 |
)
|
|
@@ -33,7 +34,15 @@ SAMPLE_RATE = 22050 # Standard sample rate for audio processing
|
|
| 33 |
CUDA_AVAILABLE = ensure_cuda_availability()
|
| 34 |
|
| 35 |
# Load genre classification model
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
genre_model = AutoModelForSequenceClassification.from_pretrained(GENRE_MODEL_NAME)
|
| 38 |
|
| 39 |
# Load LLM with appropriate quantization for T4 GPU
|
|
@@ -72,12 +81,25 @@ def extract_audio_features(audio_file):
|
|
| 72 |
|
| 73 |
return {
|
| 74 |
"features": mfccs_mean,
|
| 75 |
-
"duration": duration
|
|
|
|
|
|
|
| 76 |
}
|
| 77 |
|
| 78 |
-
def classify_genre(
|
| 79 |
"""Classify the genre of the audio using the loaded model."""
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
with torch.no_grad():
|
| 83 |
outputs = genre_model(**inputs)
|
|
@@ -140,7 +162,7 @@ def process_audio(audio_file):
|
|
| 140 |
audio_data = extract_audio_features(audio_file)
|
| 141 |
|
| 142 |
# Classify genre
|
| 143 |
-
top_genres = classify_genre(audio_data
|
| 144 |
|
| 145 |
# Format genre results using utility function
|
| 146 |
genre_results = format_genre_results(top_genres)
|
|
|
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
| 6 |
from transformers import (
|
| 7 |
+
AutoModelForSequenceClassification,
|
| 8 |
+
AutoFeatureExtractor,
|
| 9 |
+
AutoTokenizer,
|
| 10 |
+
pipeline,
|
| 11 |
AutoModelForCausalLM,
|
| 12 |
BitsAndBytesConfig
|
| 13 |
)
|
|
|
|
| 34 |
CUDA_AVAILABLE = ensure_cuda_availability()
|
| 35 |
|
| 36 |
# Load genre classification model
|
| 37 |
+
try:
|
| 38 |
+
# Try to load feature extractor first (for audio models)
|
| 39 |
+
genre_processor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME)
|
| 40 |
+
print(f"Loaded feature extractor for genre classification model: {GENRE_MODEL_NAME}")
|
| 41 |
+
except Exception as e:
|
| 42 |
+
print(f"Error loading feature extractor, using basic processing: {str(e)}")
|
| 43 |
+
genre_processor = None
|
| 44 |
+
|
| 45 |
+
# Load the model
|
| 46 |
genre_model = AutoModelForSequenceClassification.from_pretrained(GENRE_MODEL_NAME)
|
| 47 |
|
| 48 |
# Load LLM with appropriate quantization for T4 GPU
|
|
|
|
| 81 |
|
| 82 |
return {
|
| 83 |
"features": mfccs_mean,
|
| 84 |
+
"duration": duration,
|
| 85 |
+
"waveform": y,
|
| 86 |
+
"sample_rate": sr
|
| 87 |
}
|
| 88 |
|
| 89 |
+
def classify_genre(audio_data):
|
| 90 |
"""Classify the genre of the audio using the loaded model."""
|
| 91 |
+
if genre_processor is not None:
|
| 92 |
+
# Use the feature extractor if available
|
| 93 |
+
inputs = genre_processor(
|
| 94 |
+
audio_data["waveform"],
|
| 95 |
+
sampling_rate=audio_data["sample_rate"],
|
| 96 |
+
return_tensors="pt"
|
| 97 |
+
)
|
| 98 |
+
else:
|
| 99 |
+
# Fallback to basic feature processing
|
| 100 |
+
# Convert MFCC features to tensor and reshape appropriately
|
| 101 |
+
features_tensor = torch.tensor(audio_data["features"]).unsqueeze(0)
|
| 102 |
+
inputs = {"input_features": features_tensor}
|
| 103 |
|
| 104 |
with torch.no_grad():
|
| 105 |
outputs = genre_model(**inputs)
|
|
|
|
| 162 |
audio_data = extract_audio_features(audio_file)
|
| 163 |
|
| 164 |
# Classify genre
|
| 165 |
+
top_genres = classify_genre(audio_data)
|
| 166 |
|
| 167 |
# Format genre results using utility function
|
| 168 |
genre_results = format_genre_results(top_genres)
|
requirements.txt
CHANGED
|
@@ -9,4 +9,5 @@ huggingface-hub>=0.20.3
|
|
| 9 |
bitsandbytes>=0.41.1
|
| 10 |
sentencepiece>=0.1.99
|
| 11 |
safetensors>=0.4.1
|
| 12 |
-
scipy>=1.12.0
|
|
|
|
|
|
| 9 |
bitsandbytes>=0.41.1
|
| 10 |
sentencepiece>=0.1.99
|
| 11 |
safetensors>=0.4.1
|
| 12 |
+
scipy>=1.12.0
|
| 13 |
+
soundfile>=0.12.1
|
utils.py
CHANGED
|
@@ -4,8 +4,23 @@ import librosa
|
|
| 4 |
|
| 5 |
def load_audio(audio_file, sr=22050):
|
| 6 |
"""Load an audio file and convert to mono if needed."""
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def extract_audio_duration(y, sr):
|
| 11 |
"""Get the duration of audio in seconds."""
|
|
@@ -13,9 +28,14 @@ def extract_audio_duration(y, sr):
|
|
| 13 |
|
| 14 |
def extract_mfcc_features(y, sr, n_mfcc=20):
|
| 15 |
"""Extract MFCC features from audio."""
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
def calculate_lyrics_length(duration):
|
| 21 |
"""Calculate appropriate lyrics length based on audio duration."""
|
|
@@ -39,4 +59,19 @@ def ensure_cuda_availability():
|
|
| 39 |
print(f"CUDA is available with {device_count} device(s). Using: {device_name}")
|
| 40 |
else:
|
| 41 |
print("CUDA is not available. Using CPU for inference.")
|
| 42 |
-
return cuda_available
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
def load_audio(audio_file, sr=22050):
|
| 6 |
"""Load an audio file and convert to mono if needed."""
|
| 7 |
+
try:
|
| 8 |
+
# Try to load audio with librosa
|
| 9 |
+
y, sr = librosa.load(audio_file, sr=sr, mono=True)
|
| 10 |
+
return y, sr
|
| 11 |
+
except Exception as e:
|
| 12 |
+
print(f"Error loading audio with librosa: {str(e)}")
|
| 13 |
+
# Fallback to basic loading if necessary
|
| 14 |
+
import soundfile as sf
|
| 15 |
+
try:
|
| 16 |
+
y, sr = sf.read(audio_file)
|
| 17 |
+
# Convert to mono if stereo
|
| 18 |
+
if len(y.shape) > 1:
|
| 19 |
+
y = y.mean(axis=1)
|
| 20 |
+
return y, sr
|
| 21 |
+
except Exception as e2:
|
| 22 |
+
print(f"Error loading audio with soundfile: {str(e2)}")
|
| 23 |
+
raise ValueError(f"Could not load audio file: {audio_file}")
|
| 24 |
|
| 25 |
def extract_audio_duration(y, sr):
|
| 26 |
"""Get the duration of audio in seconds."""
|
|
|
|
| 28 |
|
| 29 |
def extract_mfcc_features(y, sr, n_mfcc=20):
|
| 30 |
"""Extract MFCC features from audio."""
|
| 31 |
+
try:
|
| 32 |
+
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=n_mfcc)
|
| 33 |
+
mfccs_mean = np.mean(mfccs.T, axis=0)
|
| 34 |
+
return mfccs_mean
|
| 35 |
+
except Exception as e:
|
| 36 |
+
print(f"Error extracting MFCCs: {str(e)}")
|
| 37 |
+
# Return a fallback feature vector if extraction fails
|
| 38 |
+
return np.zeros(n_mfcc)
|
| 39 |
|
| 40 |
def calculate_lyrics_length(duration):
|
| 41 |
"""Calculate appropriate lyrics length based on audio duration."""
|
|
|
|
| 59 |
print(f"CUDA is available with {device_count} device(s). Using: {device_name}")
|
| 60 |
else:
|
| 61 |
print("CUDA is not available. Using CPU for inference.")
|
| 62 |
+
return cuda_available
|
| 63 |
+
|
| 64 |
+
def preprocess_audio_for_model(waveform, sample_rate, target_sample_rate=16000, max_length=16000):
|
| 65 |
+
"""Preprocess audio for model input (resample, pad/trim)."""
|
| 66 |
+
# Resample if needed
|
| 67 |
+
if sample_rate != target_sample_rate:
|
| 68 |
+
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=target_sample_rate)
|
| 69 |
+
|
| 70 |
+
# Trim or pad to expected length
|
| 71 |
+
if len(waveform) > max_length:
|
| 72 |
+
waveform = waveform[:max_length]
|
| 73 |
+
elif len(waveform) < max_length:
|
| 74 |
+
padding = max_length - len(waveform)
|
| 75 |
+
waveform = np.pad(waveform, (0, padding), 'constant')
|
| 76 |
+
|
| 77 |
+
return waveform
|