Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModel | |
import torch | |
import numpy as np | |
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'tokenizer', 'bert-base-cased-finetuned-mrpc') | |
model = AutoModel.from_pretrained("jacklindsai/is_it_elon_musk") | |
def preprocess_text(text): | |
return tokenizer.encode_plus(text, truncation=True, padding='max_length', max_length=48, return_attention_mask=True) | |
device = torch.device('cpu') | |
def pred_is_elon_musk(text): | |
encoded_text = preprocess_text(text) | |
ids = encoded_text['input_ids'] | |
masks = encoded_text['attention_mask'] | |
ids = torch.Tensor(ids).to(device, dtype=torch.int32) | |
masks = torch.Tensor(masks).to(device, dtype=torch.int32) | |
results = model(input_ids=ids, token_type_ids=None, | |
attention_mask=masks) | |
logis = results['logits'].detach().numpy() | |
prediction = np.argmax(logis, axis=1).flatten() | |
if prediction == 1: | |
return "It's from Elon Musk." | |
else: | |
return "It's NOT from Elon Musk." | |
iface = gr.Interface(pred_is_elon_musk, inputs="text", outputs="text", title='Elon Musk Classifier APP', theme = "dark-peach", examples=["Now I'm going to buy McDonald's and fix all the ice cream machines...","Next I’m buying Coca-Cola to put the cocaine back in"], description="This app predicts whether the tweet is from Elon Musk.") | |
iface.launch(inline=False) |