Spaces:
Build error
Build error
import math | |
from collections import namedtuple | |
import torch | |
from modules import prompt_parser, devices, sd_hijack | |
from modules.shared import opts | |
class PromptChunk: | |
""" | |
This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt. | |
If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary. | |
Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token, | |
so just 75 tokens from prompt. | |
""" | |
def __init__(self): | |
self.tokens = [] | |
self.multipliers = [] | |
self.fixes = [] | |
PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding']) | |
"""An object of this type is a marker showing that textual inversion embedding's vectors have to placed at offset in the prompt | |
chunk. Thos objects are found in PromptChunk.fixes and, are placed into FrozenCLIPEmbedderWithCustomWordsBase.hijack.fixes, and finally | |
are applied by sd_hijack.EmbeddingsWithFixes's forward function.""" | |
class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): | |
"""A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to | |
have unlimited prompt length and assign weights to tokens in prompt. | |
""" | |
def __init__(self, wrapped, hijack): | |
super().__init__() | |
self.wrapped = wrapped | |
"""Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation, | |
depending on model.""" | |
self.hijack: sd_hijack.StableDiffusionModelHijack = hijack | |
self.chunk_length = 75 | |
def empty_chunk(self): | |
"""creates an empty PromptChunk and returns it""" | |
chunk = PromptChunk() | |
chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1) | |
chunk.multipliers = [1.0] * (self.chunk_length + 2) | |
return chunk | |
def get_target_prompt_token_count(self, token_count): | |
"""returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented""" | |
return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length | |
def tokenize(self, texts): | |
"""Converts a batch of texts into a batch of token ids""" | |
raise NotImplementedError | |
def encode_with_transformers(self, tokens): | |
""" | |
converts a batch of token ids (in python lists) into a single tensor with numeric respresentation of those tokens; | |
All python lists with tokens are assumed to have same length, usually 77. | |
if input is a list with B elements and each element has T tokens, expected output shape is (B, T, C), where C depends on | |
model - can be 768 and 1024. | |
Among other things, this call will read self.hijack.fixes, apply it to its inputs, and clear it (setting it to None). | |
""" | |
raise NotImplementedError | |
def encode_embedding_init_text(self, init_text, nvpt): | |
"""Converts text into a tensor with this text's tokens' embeddings. Note that those are embeddings before they are passed through | |
transformers. nvpt is used as a maximum length in tokens. If text produces less teokens than nvpt, only this many is returned.""" | |
raise NotImplementedError | |
def tokenize_line(self, line): | |
""" | |
this transforms a single prompt into a list of PromptChunk objects - as many as needed to | |
represent the prompt. | |
Returns the list and the total number of tokens in the prompt. | |
""" | |
if opts.enable_emphasis: | |
parsed = prompt_parser.parse_prompt_attention(line) | |
else: | |
parsed = [[line, 1.0]] | |
tokenized = self.tokenize([text for text, _ in parsed]) | |
chunks = [] | |
chunk = PromptChunk() | |
token_count = 0 | |
last_comma = -1 | |
def next_chunk(is_last=False): | |
"""puts current chunk into the list of results and produces the next one - empty; | |
if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count""" | |
nonlocal token_count | |
nonlocal last_comma | |
nonlocal chunk | |
if is_last: | |
token_count += len(chunk.tokens) | |
else: | |
token_count += self.chunk_length | |
to_add = self.chunk_length - len(chunk.tokens) | |
if to_add > 0: | |
chunk.tokens += [self.id_end] * to_add | |
chunk.multipliers += [1.0] * to_add | |
chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end] | |
chunk.multipliers = [1.0] + chunk.multipliers + [1.0] | |
last_comma = -1 | |
chunks.append(chunk) | |
chunk = PromptChunk() | |
for tokens, (text, weight) in zip(tokenized, parsed): | |
if text == 'BREAK' and weight == -1: | |
next_chunk() | |
continue | |
position = 0 | |
while position < len(tokens): | |
token = tokens[position] | |
if token == self.comma_token: | |
last_comma = len(chunk.tokens) | |
# this is when we are at the end of alloted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack | |
# is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next. | |
elif opts.comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= opts.comma_padding_backtrack: | |
break_location = last_comma + 1 | |
reloc_tokens = chunk.tokens[break_location:] | |
reloc_mults = chunk.multipliers[break_location:] | |
chunk.tokens = chunk.tokens[:break_location] | |
chunk.multipliers = chunk.multipliers[:break_location] | |
next_chunk() | |
chunk.tokens = reloc_tokens | |
chunk.multipliers = reloc_mults | |
if len(chunk.tokens) == self.chunk_length: | |
next_chunk() | |
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, position) | |
if embedding is None: | |
chunk.tokens.append(token) | |
chunk.multipliers.append(weight) | |
position += 1 | |
continue | |
emb_len = int(embedding.vec.shape[0]) | |
if len(chunk.tokens) + emb_len > self.chunk_length: | |
next_chunk() | |
chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding)) | |
chunk.tokens += [0] * emb_len | |
chunk.multipliers += [weight] * emb_len | |
position += embedding_length_in_tokens | |
if len(chunk.tokens) > 0 or len(chunks) == 0: | |
next_chunk(is_last=True) | |
return chunks, token_count | |
def process_texts(self, texts): | |
""" | |
Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum | |
length, in tokens, of all texts. | |
""" | |
token_count = 0 | |
cache = {} | |
batch_chunks = [] | |
for line in texts: | |
if line in cache: | |
chunks = cache[line] | |
else: | |
chunks, current_token_count = self.tokenize_line(line) | |
token_count = max(current_token_count, token_count) | |
cache[line] = chunks | |
batch_chunks.append(chunks) | |
return batch_chunks, token_count | |
def forward(self, texts): | |
""" | |
Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts. | |
Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will | |
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, and for SD2 it's 1024. | |
An example shape returned by this function can be: (2, 77, 768). | |
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet | |
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream" | |
""" | |
if opts.use_old_emphasis_implementation: | |
import modules.sd_hijack_clip_old | |
return modules.sd_hijack_clip_old.forward_old(self, texts) | |
batch_chunks, token_count = self.process_texts(texts) | |
used_embeddings = {} | |
chunk_count = max([len(x) for x in batch_chunks]) | |
zs = [] | |
for i in range(chunk_count): | |
batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks] | |
tokens = [x.tokens for x in batch_chunk] | |
multipliers = [x.multipliers for x in batch_chunk] | |
self.hijack.fixes = [x.fixes for x in batch_chunk] | |
for fixes in self.hijack.fixes: | |
for position, embedding in fixes: | |
used_embeddings[embedding.name] = embedding | |
z = self.process_tokens(tokens, multipliers) | |
zs.append(z) | |
if len(used_embeddings) > 0: | |
embeddings_list = ", ".join([f'{name} [{embedding.checksum()}]' for name, embedding in used_embeddings.items()]) | |
self.hijack.comments.append(f"Used embeddings: {embeddings_list}") | |
return torch.hstack(zs) | |
def process_tokens(self, remade_batch_tokens, batch_multipliers): | |
""" | |
sends one single prompt chunk to be encoded by transformers neural network. | |
remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually | |
there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens. | |
Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier | |
corresponds to one token. | |
""" | |
tokens = torch.asarray(remade_batch_tokens).to(devices.device) | |
# this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones. | |
if self.id_end != self.id_pad: | |
for batch_pos in range(len(remade_batch_tokens)): | |
index = remade_batch_tokens[batch_pos].index(self.id_end) | |
tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad | |
z = self.encode_with_transformers(tokens) | |
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise | |
batch_multipliers = torch.asarray(batch_multipliers).to(devices.device) | |
original_mean = z.mean() | |
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) | |
new_mean = z.mean() | |
z = z * (original_mean / new_mean) | |
return z | |
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase): | |
def __init__(self, wrapped, hijack): | |
super().__init__(wrapped, hijack) | |
self.tokenizer = wrapped.tokenizer | |
vocab = self.tokenizer.get_vocab() | |
self.comma_token = vocab.get(',</w>', None) | |
self.token_mults = {} | |
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k] | |
for text, ident in tokens_with_parens: | |
mult = 1.0 | |
for c in text: | |
if c == '[': | |
mult /= 1.1 | |
if c == ']': | |
mult *= 1.1 | |
if c == '(': | |
mult *= 1.1 | |
if c == ')': | |
mult /= 1.1 | |
if mult != 1.0: | |
self.token_mults[ident] = mult | |
self.id_start = self.wrapped.tokenizer.bos_token_id | |
self.id_end = self.wrapped.tokenizer.eos_token_id | |
self.id_pad = self.id_end | |
def tokenize(self, texts): | |
tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] | |
return tokenized | |
def encode_with_transformers(self, tokens): | |
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers) | |
if opts.CLIP_stop_at_last_layers > 1: | |
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers] | |
z = self.wrapped.transformer.text_model.final_layer_norm(z) | |
else: | |
z = outputs.last_hidden_state | |
return z | |
def encode_embedding_init_text(self, init_text, nvpt): | |
embedding_layer = self.wrapped.transformer.text_model.embeddings | |
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"] | |
embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0) | |
return embedded | |