Spaces:
Build error
Build error
# this file is adapted from https://github.com/victorca25/iNNfer | |
from collections import OrderedDict | |
import math | |
import functools | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
#################### | |
# RRDBNet Generator | |
#################### | |
class RRDBNet(nn.Module): | |
def __init__(self, in_nc, out_nc, nf, nb, nr=3, gc=32, upscale=4, norm_type=None, | |
act_type='leakyrelu', mode='CNA', upsample_mode='upconv', convtype='Conv2D', | |
finalact=None, gaussian_noise=False, plus=False): | |
super(RRDBNet, self).__init__() | |
n_upscale = int(math.log(upscale, 2)) | |
if upscale == 3: | |
n_upscale = 1 | |
self.resrgan_scale = 0 | |
if in_nc % 16 == 0: | |
self.resrgan_scale = 1 | |
elif in_nc != 4 and in_nc % 4 == 0: | |
self.resrgan_scale = 2 | |
fea_conv = conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype) | |
rb_blocks = [RRDB(nf, nr, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero', | |
norm_type=norm_type, act_type=act_type, mode='CNA', convtype=convtype, | |
gaussian_noise=gaussian_noise, plus=plus) for _ in range(nb)] | |
LR_conv = conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode, convtype=convtype) | |
if upsample_mode == 'upconv': | |
upsample_block = upconv_block | |
elif upsample_mode == 'pixelshuffle': | |
upsample_block = pixelshuffle_block | |
else: | |
raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode)) | |
if upscale == 3: | |
upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype) | |
else: | |
upsampler = [upsample_block(nf, nf, act_type=act_type, convtype=convtype) for _ in range(n_upscale)] | |
HR_conv0 = conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype) | |
HR_conv1 = conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype) | |
outact = act(finalact) if finalact else None | |
self.model = sequential(fea_conv, ShortcutBlock(sequential(*rb_blocks, LR_conv)), | |
*upsampler, HR_conv0, HR_conv1, outact) | |
def forward(self, x, outm=None): | |
if self.resrgan_scale == 1: | |
feat = pixel_unshuffle(x, scale=4) | |
elif self.resrgan_scale == 2: | |
feat = pixel_unshuffle(x, scale=2) | |
else: | |
feat = x | |
return self.model(feat) | |
class RRDB(nn.Module): | |
""" | |
Residual in Residual Dense Block | |
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks) | |
""" | |
def __init__(self, nf, nr=3, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero', | |
norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D', | |
spectral_norm=False, gaussian_noise=False, plus=False): | |
super(RRDB, self).__init__() | |
# This is for backwards compatibility with existing models | |
if nr == 3: | |
self.RDB1 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, | |
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, | |
gaussian_noise=gaussian_noise, plus=plus) | |
self.RDB2 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, | |
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, | |
gaussian_noise=gaussian_noise, plus=plus) | |
self.RDB3 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, | |
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, | |
gaussian_noise=gaussian_noise, plus=plus) | |
else: | |
RDB_list = [ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, | |
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, | |
gaussian_noise=gaussian_noise, plus=plus) for _ in range(nr)] | |
self.RDBs = nn.Sequential(*RDB_list) | |
def forward(self, x): | |
if hasattr(self, 'RDB1'): | |
out = self.RDB1(x) | |
out = self.RDB2(out) | |
out = self.RDB3(out) | |
else: | |
out = self.RDBs(x) | |
return out * 0.2 + x | |
class ResidualDenseBlock_5C(nn.Module): | |
""" | |
Residual Dense Block | |
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18) | |
Modified options that can be used: | |
- "Partial Convolution based Padding" arXiv:1811.11718 | |
- "Spectral normalization" arXiv:1802.05957 | |
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C. | |
{Rakotonirina} and A. {Rasoanaivo} | |
""" | |
def __init__(self, nf=64, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero', | |
norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D', | |
spectral_norm=False, gaussian_noise=False, plus=False): | |
super(ResidualDenseBlock_5C, self).__init__() | |
self.noise = GaussianNoise() if gaussian_noise else None | |
self.conv1x1 = conv1x1(nf, gc) if plus else None | |
self.conv1 = conv_block(nf, gc, kernel_size, stride, bias=bias, pad_type=pad_type, | |
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, | |
spectral_norm=spectral_norm) | |
self.conv2 = conv_block(nf+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, | |
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, | |
spectral_norm=spectral_norm) | |
self.conv3 = conv_block(nf+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, | |
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, | |
spectral_norm=spectral_norm) | |
self.conv4 = conv_block(nf+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, | |
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, | |
spectral_norm=spectral_norm) | |
if mode == 'CNA': | |
last_act = None | |
else: | |
last_act = act_type | |
self.conv5 = conv_block(nf+4*gc, nf, 3, stride, bias=bias, pad_type=pad_type, | |
norm_type=norm_type, act_type=last_act, mode=mode, convtype=convtype, | |
spectral_norm=spectral_norm) | |
def forward(self, x): | |
x1 = self.conv1(x) | |
x2 = self.conv2(torch.cat((x, x1), 1)) | |
if self.conv1x1: | |
x2 = x2 + self.conv1x1(x) | |
x3 = self.conv3(torch.cat((x, x1, x2), 1)) | |
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1)) | |
if self.conv1x1: | |
x4 = x4 + x2 | |
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) | |
if self.noise: | |
return self.noise(x5.mul(0.2) + x) | |
else: | |
return x5 * 0.2 + x | |
#################### | |
# ESRGANplus | |
#################### | |
class GaussianNoise(nn.Module): | |
def __init__(self, sigma=0.1, is_relative_detach=False): | |
super().__init__() | |
self.sigma = sigma | |
self.is_relative_detach = is_relative_detach | |
self.noise = torch.tensor(0, dtype=torch.float) | |
def forward(self, x): | |
if self.training and self.sigma != 0: | |
self.noise = self.noise.to(x.device) | |
scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x | |
sampled_noise = self.noise.repeat(*x.size()).normal_() * scale | |
x = x + sampled_noise | |
return x | |
def conv1x1(in_planes, out_planes, stride=1): | |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
#################### | |
# SRVGGNetCompact | |
#################### | |
class SRVGGNetCompact(nn.Module): | |
"""A compact VGG-style network structure for super-resolution. | |
This class is copied from https://github.com/xinntao/Real-ESRGAN | |
""" | |
def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'): | |
super(SRVGGNetCompact, self).__init__() | |
self.num_in_ch = num_in_ch | |
self.num_out_ch = num_out_ch | |
self.num_feat = num_feat | |
self.num_conv = num_conv | |
self.upscale = upscale | |
self.act_type = act_type | |
self.body = nn.ModuleList() | |
# the first conv | |
self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)) | |
# the first activation | |
if act_type == 'relu': | |
activation = nn.ReLU(inplace=True) | |
elif act_type == 'prelu': | |
activation = nn.PReLU(num_parameters=num_feat) | |
elif act_type == 'leakyrelu': | |
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) | |
self.body.append(activation) | |
# the body structure | |
for _ in range(num_conv): | |
self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1)) | |
# activation | |
if act_type == 'relu': | |
activation = nn.ReLU(inplace=True) | |
elif act_type == 'prelu': | |
activation = nn.PReLU(num_parameters=num_feat) | |
elif act_type == 'leakyrelu': | |
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) | |
self.body.append(activation) | |
# the last conv | |
self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1)) | |
# upsample | |
self.upsampler = nn.PixelShuffle(upscale) | |
def forward(self, x): | |
out = x | |
for i in range(0, len(self.body)): | |
out = self.body[i](out) | |
out = self.upsampler(out) | |
# add the nearest upsampled image, so that the network learns the residual | |
base = F.interpolate(x, scale_factor=self.upscale, mode='nearest') | |
out += base | |
return out | |
#################### | |
# Upsampler | |
#################### | |
class Upsample(nn.Module): | |
r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data. | |
The input data is assumed to be of the form | |
`minibatch x channels x [optional depth] x [optional height] x width`. | |
""" | |
def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None): | |
super(Upsample, self).__init__() | |
if isinstance(scale_factor, tuple): | |
self.scale_factor = tuple(float(factor) for factor in scale_factor) | |
else: | |
self.scale_factor = float(scale_factor) if scale_factor else None | |
self.mode = mode | |
self.size = size | |
self.align_corners = align_corners | |
def forward(self, x): | |
return nn.functional.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners) | |
def extra_repr(self): | |
if self.scale_factor is not None: | |
info = 'scale_factor=' + str(self.scale_factor) | |
else: | |
info = 'size=' + str(self.size) | |
info += ', mode=' + self.mode | |
return info | |
def pixel_unshuffle(x, scale): | |
""" Pixel unshuffle. | |
Args: | |
x (Tensor): Input feature with shape (b, c, hh, hw). | |
scale (int): Downsample ratio. | |
Returns: | |
Tensor: the pixel unshuffled feature. | |
""" | |
b, c, hh, hw = x.size() | |
out_channel = c * (scale**2) | |
assert hh % scale == 0 and hw % scale == 0 | |
h = hh // scale | |
w = hw // scale | |
x_view = x.view(b, c, h, scale, w, scale) | |
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w) | |
def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, | |
pad_type='zero', norm_type=None, act_type='relu', convtype='Conv2D'): | |
""" | |
Pixel shuffle layer | |
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional | |
Neural Network, CVPR17) | |
""" | |
conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias, | |
pad_type=pad_type, norm_type=None, act_type=None, convtype=convtype) | |
pixel_shuffle = nn.PixelShuffle(upscale_factor) | |
n = norm(norm_type, out_nc) if norm_type else None | |
a = act(act_type) if act_type else None | |
return sequential(conv, pixel_shuffle, n, a) | |
def upconv_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, | |
pad_type='zero', norm_type=None, act_type='relu', mode='nearest', convtype='Conv2D'): | |
""" Upconv layer """ | |
upscale_factor = (1, upscale_factor, upscale_factor) if convtype == 'Conv3D' else upscale_factor | |
upsample = Upsample(scale_factor=upscale_factor, mode=mode) | |
conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias, | |
pad_type=pad_type, norm_type=norm_type, act_type=act_type, convtype=convtype) | |
return sequential(upsample, conv) | |
#################### | |
# Basic blocks | |
#################### | |
def make_layer(basic_block, num_basic_block, **kwarg): | |
"""Make layers by stacking the same blocks. | |
Args: | |
basic_block (nn.module): nn.module class for basic block. (block) | |
num_basic_block (int): number of blocks. (n_layers) | |
Returns: | |
nn.Sequential: Stacked blocks in nn.Sequential. | |
""" | |
layers = [] | |
for _ in range(num_basic_block): | |
layers.append(basic_block(**kwarg)) | |
return nn.Sequential(*layers) | |
def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0): | |
""" activation helper """ | |
act_type = act_type.lower() | |
if act_type == 'relu': | |
layer = nn.ReLU(inplace) | |
elif act_type in ('leakyrelu', 'lrelu'): | |
layer = nn.LeakyReLU(neg_slope, inplace) | |
elif act_type == 'prelu': | |
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) | |
elif act_type == 'tanh': # [-1, 1] range output | |
layer = nn.Tanh() | |
elif act_type == 'sigmoid': # [0, 1] range output | |
layer = nn.Sigmoid() | |
else: | |
raise NotImplementedError('activation layer [{:s}] is not found'.format(act_type)) | |
return layer | |
class Identity(nn.Module): | |
def __init__(self, *kwargs): | |
super(Identity, self).__init__() | |
def forward(self, x, *kwargs): | |
return x | |
def norm(norm_type, nc): | |
""" Return a normalization layer """ | |
norm_type = norm_type.lower() | |
if norm_type == 'batch': | |
layer = nn.BatchNorm2d(nc, affine=True) | |
elif norm_type == 'instance': | |
layer = nn.InstanceNorm2d(nc, affine=False) | |
elif norm_type == 'none': | |
def norm_layer(x): return Identity() | |
else: | |
raise NotImplementedError('normalization layer [{:s}] is not found'.format(norm_type)) | |
return layer | |
def pad(pad_type, padding): | |
""" padding layer helper """ | |
pad_type = pad_type.lower() | |
if padding == 0: | |
return None | |
if pad_type == 'reflect': | |
layer = nn.ReflectionPad2d(padding) | |
elif pad_type == 'replicate': | |
layer = nn.ReplicationPad2d(padding) | |
elif pad_type == 'zero': | |
layer = nn.ZeroPad2d(padding) | |
else: | |
raise NotImplementedError('padding layer [{:s}] is not implemented'.format(pad_type)) | |
return layer | |
def get_valid_padding(kernel_size, dilation): | |
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1) | |
padding = (kernel_size - 1) // 2 | |
return padding | |
class ShortcutBlock(nn.Module): | |
""" Elementwise sum the output of a submodule to its input """ | |
def __init__(self, submodule): | |
super(ShortcutBlock, self).__init__() | |
self.sub = submodule | |
def forward(self, x): | |
output = x + self.sub(x) | |
return output | |
def __repr__(self): | |
return 'Identity + \n|' + self.sub.__repr__().replace('\n', '\n|') | |
def sequential(*args): | |
""" Flatten Sequential. It unwraps nn.Sequential. """ | |
if len(args) == 1: | |
if isinstance(args[0], OrderedDict): | |
raise NotImplementedError('sequential does not support OrderedDict input.') | |
return args[0] # No sequential is needed. | |
modules = [] | |
for module in args: | |
if isinstance(module, nn.Sequential): | |
for submodule in module.children(): | |
modules.append(submodule) | |
elif isinstance(module, nn.Module): | |
modules.append(module) | |
return nn.Sequential(*modules) | |
def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True, | |
pad_type='zero', norm_type=None, act_type='relu', mode='CNA', convtype='Conv2D', | |
spectral_norm=False): | |
""" Conv layer with padding, normalization, activation """ | |
assert mode in ['CNA', 'NAC', 'CNAC'], 'Wrong conv mode [{:s}]'.format(mode) | |
padding = get_valid_padding(kernel_size, dilation) | |
p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None | |
padding = padding if pad_type == 'zero' else 0 | |
if convtype=='PartialConv2D': | |
c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, | |
dilation=dilation, bias=bias, groups=groups) | |
elif convtype=='DeformConv2D': | |
c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, | |
dilation=dilation, bias=bias, groups=groups) | |
elif convtype=='Conv3D': | |
c = nn.Conv3d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, | |
dilation=dilation, bias=bias, groups=groups) | |
else: | |
c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, | |
dilation=dilation, bias=bias, groups=groups) | |
if spectral_norm: | |
c = nn.utils.spectral_norm(c) | |
a = act(act_type) if act_type else None | |
if 'CNA' in mode: | |
n = norm(norm_type, out_nc) if norm_type else None | |
return sequential(p, c, n, a) | |
elif mode == 'NAC': | |
if norm_type is None and act_type is not None: | |
a = act(act_type, inplace=False) | |
n = norm(norm_type, in_nc) if norm_type else None | |
return sequential(n, a, p, c) | |