Spaces:
Build error
Build error
import os | |
import re | |
import shutil | |
import torch | |
import tqdm | |
from modules import shared, images, sd_models, sd_vae, sd_models_config | |
from modules.ui_common import plaintext_to_html | |
import gradio as gr | |
import safetensors.torch | |
def run_pnginfo(image): | |
if image is None: | |
return '', '', '' | |
geninfo, items = images.read_info_from_image(image) | |
items = {**{'parameters': geninfo}, **items} | |
info = '' | |
for key, text in items.items(): | |
info += f""" | |
<div> | |
<p><b>{plaintext_to_html(str(key))}</b></p> | |
<p>{plaintext_to_html(str(text))}</p> | |
</div> | |
""".strip()+"\n" | |
if len(info) == 0: | |
message = "Nothing found in the image." | |
info = f"<div><p>{message}<p></div>" | |
return '', geninfo, info | |
def create_config(ckpt_result, config_source, a, b, c): | |
def config(x): | |
res = sd_models_config.find_checkpoint_config_near_filename(x) if x else None | |
return res if res != shared.sd_default_config else None | |
if config_source == 0: | |
cfg = config(a) or config(b) or config(c) | |
elif config_source == 1: | |
cfg = config(b) | |
elif config_source == 2: | |
cfg = config(c) | |
else: | |
cfg = None | |
if cfg is None: | |
return | |
filename, _ = os.path.splitext(ckpt_result) | |
checkpoint_filename = filename + ".yaml" | |
print("Copying config:") | |
print(" from:", cfg) | |
print(" to:", checkpoint_filename) | |
shutil.copyfile(cfg, checkpoint_filename) | |
checkpoint_dict_skip_on_merge = ["cond_stage_model.transformer.text_model.embeddings.position_ids"] | |
def to_half(tensor, enable): | |
if enable and tensor.dtype == torch.float: | |
return tensor.half() | |
return tensor | |
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights): | |
shared.state.begin() | |
shared.state.job = 'model-merge' | |
def fail(message): | |
shared.state.textinfo = message | |
shared.state.end() | |
return [*[gr.update() for _ in range(4)], message] | |
def weighted_sum(theta0, theta1, alpha): | |
return ((1 - alpha) * theta0) + (alpha * theta1) | |
def get_difference(theta1, theta2): | |
return theta1 - theta2 | |
def add_difference(theta0, theta1_2_diff, alpha): | |
return theta0 + (alpha * theta1_2_diff) | |
def filename_weighted_sum(): | |
a = primary_model_info.model_name | |
b = secondary_model_info.model_name | |
Ma = round(1 - multiplier, 2) | |
Mb = round(multiplier, 2) | |
return f"{Ma}({a}) + {Mb}({b})" | |
def filename_add_difference(): | |
a = primary_model_info.model_name | |
b = secondary_model_info.model_name | |
c = tertiary_model_info.model_name | |
M = round(multiplier, 2) | |
return f"{a} + {M}({b} - {c})" | |
def filename_nothing(): | |
return primary_model_info.model_name | |
theta_funcs = { | |
"Weighted sum": (filename_weighted_sum, None, weighted_sum), | |
"Add difference": (filename_add_difference, get_difference, add_difference), | |
"No interpolation": (filename_nothing, None, None), | |
} | |
filename_generator, theta_func1, theta_func2 = theta_funcs[interp_method] | |
shared.state.job_count = (1 if theta_func1 else 0) + (1 if theta_func2 else 0) | |
if not primary_model_name: | |
return fail("Failed: Merging requires a primary model.") | |
primary_model_info = sd_models.checkpoints_list[primary_model_name] | |
if theta_func2 and not secondary_model_name: | |
return fail("Failed: Merging requires a secondary model.") | |
secondary_model_info = sd_models.checkpoints_list[secondary_model_name] if theta_func2 else None | |
if theta_func1 and not tertiary_model_name: | |
return fail(f"Failed: Interpolation method ({interp_method}) requires a tertiary model.") | |
tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None | |
result_is_inpainting_model = False | |
result_is_instruct_pix2pix_model = False | |
if theta_func2: | |
shared.state.textinfo = f"Loading B" | |
print(f"Loading {secondary_model_info.filename}...") | |
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu') | |
else: | |
theta_1 = None | |
if theta_func1: | |
shared.state.textinfo = f"Loading C" | |
print(f"Loading {tertiary_model_info.filename}...") | |
theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu') | |
shared.state.textinfo = 'Merging B and C' | |
shared.state.sampling_steps = len(theta_1.keys()) | |
for key in tqdm.tqdm(theta_1.keys()): | |
if key in checkpoint_dict_skip_on_merge: | |
continue | |
if 'model' in key: | |
if key in theta_2: | |
t2 = theta_2.get(key, torch.zeros_like(theta_1[key])) | |
theta_1[key] = theta_func1(theta_1[key], t2) | |
else: | |
theta_1[key] = torch.zeros_like(theta_1[key]) | |
shared.state.sampling_step += 1 | |
del theta_2 | |
shared.state.nextjob() | |
shared.state.textinfo = f"Loading {primary_model_info.filename}..." | |
print(f"Loading {primary_model_info.filename}...") | |
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu') | |
print("Merging...") | |
shared.state.textinfo = 'Merging A and B' | |
shared.state.sampling_steps = len(theta_0.keys()) | |
for key in tqdm.tqdm(theta_0.keys()): | |
if theta_1 and 'model' in key and key in theta_1: | |
if key in checkpoint_dict_skip_on_merge: | |
continue | |
a = theta_0[key] | |
b = theta_1[key] | |
# this enables merging an inpainting model (A) with another one (B); | |
# where normal model would have 4 channels, for latenst space, inpainting model would | |
# have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9 | |
if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]: | |
if a.shape[1] == 4 and b.shape[1] == 9: | |
raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.") | |
if a.shape[1] == 4 and b.shape[1] == 8: | |
raise RuntimeError("When merging instruct-pix2pix model with a normal one, A must be the instruct-pix2pix model.") | |
if a.shape[1] == 8 and b.shape[1] == 4:#If we have an Instruct-Pix2Pix model... | |
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)#Merge only the vectors the models have in common. Otherwise we get an error due to dimension mismatch. | |
result_is_instruct_pix2pix_model = True | |
else: | |
assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}" | |
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier) | |
result_is_inpainting_model = True | |
else: | |
theta_0[key] = theta_func2(a, b, multiplier) | |
theta_0[key] = to_half(theta_0[key], save_as_half) | |
shared.state.sampling_step += 1 | |
del theta_1 | |
bake_in_vae_filename = sd_vae.vae_dict.get(bake_in_vae, None) | |
if bake_in_vae_filename is not None: | |
print(f"Baking in VAE from {bake_in_vae_filename}") | |
shared.state.textinfo = 'Baking in VAE' | |
vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename, map_location='cpu') | |
for key in vae_dict.keys(): | |
theta_0_key = 'first_stage_model.' + key | |
if theta_0_key in theta_0: | |
theta_0[theta_0_key] = to_half(vae_dict[key], save_as_half) | |
del vae_dict | |
if save_as_half and not theta_func2: | |
for key in theta_0.keys(): | |
theta_0[key] = to_half(theta_0[key], save_as_half) | |
if discard_weights: | |
regex = re.compile(discard_weights) | |
for key in list(theta_0): | |
if re.search(regex, key): | |
theta_0.pop(key, None) | |
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path | |
filename = filename_generator() if custom_name == '' else custom_name | |
filename += ".inpainting" if result_is_inpainting_model else "" | |
filename += ".instruct-pix2pix" if result_is_instruct_pix2pix_model else "" | |
filename += "." + checkpoint_format | |
output_modelname = os.path.join(ckpt_dir, filename) | |
shared.state.nextjob() | |
shared.state.textinfo = "Saving" | |
print(f"Saving to {output_modelname}...") | |
_, extension = os.path.splitext(output_modelname) | |
if extension.lower() == ".safetensors": | |
safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"}) | |
else: | |
torch.save(theta_0, output_modelname) | |
sd_models.list_models() | |
create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info) | |
print(f"Checkpoint saved to {output_modelname}.") | |
shared.state.textinfo = "Checkpoint saved" | |
shared.state.end() | |
return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], "Checkpoint saved to " + output_modelname] | |