Spaces:
Running
Running
import streamlit as st | |
from transformers import pipeline | |
#from datasets import load_dataset, Image | |
from huggingface_hub import from_pretrained_keras | |
import keras | |
import numpy as np | |
from PIL import Image | |
loaded_model = keras.saving.load_model("best_model.keras") | |
uploaded_img = st.file_uploader("Upload your file here...",type=['png', 'jpeg', 'jpg']) | |
if uploaded_img is not None: | |
st.image(uploaded_img) | |
img = Image.open(uploaded_img).resize((160, 160)) | |
img = np.array(img) | |
result = loaded_model.predict(img[None,:,:]) | |
st.write(f"Your prediction is: {result}") | |
#model = from_pretrained_keras("jableable/road_model") | |
#pipe = pipeline('sentiment-analysis') | |
#text = st.text_area('enter some text!') | |
#if text: | |
#out = pipe(text) | |
#st.json(out) | |
#loaded_model = keras.saving.load_model("jableable/road_model") | |
#model = from_pretrained_keras("keras-io/ocr-for-captcha") | |
#model.summary() | |
#prediction = model.predict(image) | |
#prediction = tf.squeeze(tf.round(prediction)) | |
#print(f'The image is a {classes[(np.argmax(prediction))]}!') | |
#dataset = load_dataset("beans", split="train") | |
#loaded_img = dataset[0]["image"] | |
#print(loaded_img) | |