boking-cancelation-api / src /preprocessing.py
j2damax's picture
Deploy app with models and artifacts (force update)
575d22a verified
"""Centralized preprocessing pipeline for hotel cancellation prediction.
Provides a reusable class that encapsulates:
- Categorical handling strategy (currently: drop)
- Numeric scaling (StandardScaler)
- Feature ordering preservation
- Artifact persistence / loading
Future extension points:
- onehot / target / hybrid categorical strategies
- numeric imputation strategies
- feature selection masks
Usage:
pipeline = PreprocessingPipeline(categorical_strategy='drop', scale=True)
X_train_proc = pipeline.fit_transform(X_train)
X_test_proc = pipeline.transform(X_test)
pipeline.save('models/preprocessor.pkl')
# Later / inference
pipeline = PreprocessingPipeline.load('models/preprocessor.pkl')
X_new = pipeline.transform(X_incoming)
"""
from __future__ import annotations
from dataclasses import dataclass, asdict
from typing import List, Optional, Dict, Any, Tuple
import pandas as pd
import joblib
from sklearn.preprocessing import StandardScaler
import os
import numpy as np
@dataclass
class PreprocessingState:
categorical_strategy: str
scaled_numeric: List[str]
dropped_columns: List[str]
feature_order: List[str]
scale: bool
# One-hot specific
onehot_categories: Optional[Dict[str, List[str]]] = None
# Target encoding specific
target_mappings: Optional[Dict[str, Dict[str, float]]] = None
target_global_mean: Optional[float] = None
target_encoded_columns: Optional[List[str]] = None
class PreprocessingPipeline:
def __init__(self, categorical_strategy: str = 'drop', scale: bool = True, target_min_samples: int = 5, target_smoothing: float = 10.0):
self.categorical_strategy = categorical_strategy
self.scale = scale
self._scaler: Optional[StandardScaler] = None
self.state: Optional[PreprocessingState] = None
# target encoding hyperparams
self.target_min_samples = target_min_samples
self.target_smoothing = target_smoothing
def _apply_onehot_fit(self, X: pd.DataFrame) -> Tuple[pd.DataFrame, Dict[str, List[str]]]:
cat_cols = [c for c in X.columns if X[c].dtype == 'object' or pd.api.types.is_categorical_dtype(X[c])]
categories: Dict[str, List[str]] = {}
transformed_parts = [X[[c]] for c in X.columns if c not in cat_cols]
for c in cat_cols:
cats = sorted([str(v) for v in X[c].dropna().unique()])
categories[c] = cats
for val in cats:
col_name = f"{c}__{val}"
transformed_parts.append((X[c].astype(str) == val).astype(int).to_frame(col_name))
X_new = pd.concat(transformed_parts, axis=1)
return X_new, categories
def _apply_onehot_transform(self, X: pd.DataFrame) -> pd.DataFrame:
assert self.state and self.state.onehot_categories
cat_schema = self.state.onehot_categories
out_parts = []
# Numeric / other passthrough first (original columns that were not categorical at fit time)
for c in self.state.feature_order:
# original feature_order contains post-onehot columns already; skip here
pass
# Reconstruct expected columns deterministically
for base_col, cats in cat_schema.items():
series = X[base_col].astype(str) if base_col in X.columns else pd.Series([None]*len(X), index=X.index)
for val in cats:
col_name = f"{base_col}__{val}"
out_parts.append((series == val).astype(int).rename(col_name))
# Add any numeric columns (those not in cat_schema keys)
numeric_like = [c for c in X.columns if c not in cat_schema]
for c in numeric_like:
if c not in self.state.feature_order and any(c.startswith(f"{k}__") for k in cat_schema):
# skip inadvertent collision
continue
if c in cat_schema:
continue
if pd.api.types.is_numeric_dtype(X[c]):
out_parts.append(X[c])
X_new = pd.concat(out_parts, axis=1)
# Align to stored feature order
missing = [c for c in self.state.feature_order if c not in X_new.columns]
for m in missing:
X_new[m] = 0 # unseen category -> all zeros
X_new = X_new[self.state.feature_order]
return X_new
def _compute_target_encoding(self, X: pd.DataFrame, y: pd.Series) -> Tuple[pd.DataFrame, Dict[str, Dict[str,float]], float, List[str]]:
cat_cols = [c for c in X.columns if X[c].dtype == 'object' or pd.api.types.is_categorical_dtype(X[c])]
mappings: Dict[str, Dict[str, float]] = {}
global_mean = float(y.mean())
X_encoded = X.copy()
encoded_cols: List[str] = []
for c in cat_cols:
stats = y.groupby(X[c]).agg(['mean','count'])
# smoothing: (count*mean + smoothing*global) / (count + smoothing)
smooth = (stats['count'] * stats['mean'] + self.target_smoothing * global_mean) / (stats['count'] + self.target_smoothing)
mapping = smooth.to_dict()
mappings[c] = mapping
new_col = f"{c}__te"
encoded_cols.append(new_col)
X_encoded[new_col] = X[c].map(mapping).fillna(global_mean)
# Drop original categorical columns
X_encoded = X_encoded.drop(columns=cat_cols)
return X_encoded, mappings, global_mean, encoded_cols
def _apply_target_transform(self, X: pd.DataFrame) -> pd.DataFrame:
assert self.state and self.state.target_mappings is not None
global_mean = self.state.target_global_mean
X_new = X.copy()
# For each mapping, create encoded column
for col, mapping in self.state.target_mappings.items():
new_col = f"{col}__te"
series = X_new[col] if col in X_new.columns else pd.Series([None]*len(X_new), index=X_new.index)
X_new[new_col] = series.map(mapping).fillna(global_mean)
# Drop raw categorical cols
X_new = X_new.drop(columns=list(self.state.target_mappings.keys()))
# Align order / add any missing
missing = [c for c in self.state.feature_order if c not in X_new.columns]
for m in missing:
X_new[m] = 0.0
X_new = X_new[self.state.feature_order]
return X_new
def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None) -> 'PreprocessingPipeline':
X = X.copy()
dropped: List[str] = []
onehot_categories: Optional[Dict[str, List[str]]] = None
target_mappings: Optional[Dict[str, Dict[str, float]]] = None
target_global_mean: Optional[float] = None
target_encoded_cols: Optional[List[str]] = None
if self.categorical_strategy == 'drop':
non_numeric = [c for c in X.columns if not pd.api.types.is_numeric_dtype(X[c])]
if non_numeric:
X = X.drop(columns=non_numeric)
dropped = non_numeric
elif self.categorical_strategy == 'onehot':
X, onehot_categories = self._apply_onehot_fit(X)
elif self.categorical_strategy == 'target':
if y is None:
raise ValueError("Target series y must be provided for target encoding strategy.")
X, target_mappings, target_global_mean, target_encoded_cols = self._compute_target_encoding(X, y)
else:
raise NotImplementedError(f"Categorical strategy '{self.categorical_strategy}' not implemented.")
numeric_cols = [c for c in X.columns if pd.api.types.is_numeric_dtype(X[c])]
if self.scale and numeric_cols:
self._scaler = StandardScaler()
self._scaler.fit(X[numeric_cols])
self.state = PreprocessingState(
categorical_strategy=self.categorical_strategy,
scaled_numeric=numeric_cols if self.scale else [],
dropped_columns=dropped,
feature_order=list(X.columns),
scale=self.scale,
onehot_categories=onehot_categories,
target_mappings=target_mappings,
target_global_mean=target_global_mean,
target_encoded_columns=target_encoded_cols
)
return self
def transform(self, X: pd.DataFrame) -> pd.DataFrame:
if self.state is None:
raise RuntimeError("Pipeline not fitted.")
X = X.copy()
if self.state.categorical_strategy == 'drop':
for col in self.state.dropped_columns:
if col in X.columns:
X = X.drop(columns=col)
missing = [c for c in self.state.feature_order if c not in X.columns]
if missing:
raise ValueError(f"Incoming data missing columns required by preprocessor: {missing}")
X = X[self.state.feature_order]
elif self.state.categorical_strategy == 'onehot':
X = self._apply_onehot_transform(X)
elif self.state.categorical_strategy == 'target':
X = self._apply_target_transform(X)
else:
raise NotImplementedError(f"Unknown strategy {self.state.categorical_strategy}")
if self.scale and self._scaler is not None:
# Ensure float dtype prior to scaling assignment to avoid pandas FutureWarning
for col in self.state.scaled_numeric:
if not pd.api.types.is_float_dtype(X[col]):
X[col] = X[col].astype('float64')
X.loc[:, self.state.scaled_numeric] = self._scaler.transform(X[self.state.scaled_numeric])
return X
def fit_transform(self, X: pd.DataFrame, y: Optional[pd.Series] = None) -> pd.DataFrame:
return self.fit(X, y).transform(X)
def save(self, path: str):
os.makedirs(os.path.dirname(path), exist_ok=True)
payload: Dict[str, Any] = {
'state': asdict(self.state) if self.state else None,
'categorical_strategy': self.categorical_strategy,
'scale': self.scale,
'scaler': self._scaler,
'target_min_samples': self.target_min_samples,
'target_smoothing': self.target_smoothing
}
joblib.dump(payload, path)
@classmethod
def load(cls, path: str) -> 'PreprocessingPipeline':
payload = joblib.load(path)
pipe = cls(
categorical_strategy=payload.get('categorical_strategy', 'drop'),
scale=payload.get('scale', True),
target_min_samples=payload.get('target_min_samples', 5),
target_smoothing=payload.get('target_smoothing', 10.0)
)
state_dict = payload.get('state')
if state_dict:
pipe.state = PreprocessingState(**state_dict)
pipe._scaler = payload.get('scaler')
return pipe
def to_metadata(self) -> Dict[str, Any]:
return asdict(self.state) if self.state else {}
"""Helper for future extension: registration of new categorical strategies.
Currently omitted for brevity."""