iyadalagha commited on
Commit
94f2df7
·
1 Parent(s): a6dac98

Switch to akshayvkt/detect-ai-text to fix model_type error

Browse files
Files changed (4) hide show
  1. Dockerfile +1 -1
  2. README.md +1 -1
  3. app.py +2 -5
  4. requirements.txt +2 -1
Dockerfile CHANGED
@@ -20,7 +20,7 @@ RUN pip install --no-cache-dir -r requirements.txt
20
  RUN pip install --no-cache-dir uvicorn
21
 
22
  # Clear cache and pre-download model
23
- RUN rm -rf /app/.cache/huggingface/* && python -c "from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline; tokenizer = AutoTokenizer.from_pretrained('SuperAnnotate/ai-detector'); model = AutoModelForSequenceClassification.from_pretrained('SuperAnnotate/ai-detector'); pipeline('text-classification', model=model, tokenizer=tokenizer)"
24
 
25
  # Copy the application code
26
  COPY --chown=myuser:myuser . .
 
20
  RUN pip install --no-cache-dir uvicorn
21
 
22
  # Clear cache and pre-download model
23
+ RUN rm -rf /app/.cache/huggingface/* && python -c "from transformers import pipeline; pipeline('text-classification', model='akshayvkt/detect-ai-text')"
24
 
25
  # Copy the application code
26
  COPY --chown=myuser:myuser . .
README.md CHANGED
@@ -6,4 +6,4 @@ colorTo: green
6
  sdk: docker
7
  app_port: 7860
8
  ---
9
- A FastAPI app using roberta-base-openai-detector to classify text as AI-generated or real.
 
6
  sdk: docker
7
  app_port: 7860
8
  ---
9
+ A FastAPI app using akshayvkt/detect-ai-text to classify text as AI-generated or human-written.
app.py CHANGED
@@ -1,14 +1,11 @@
1
  from fastapi import FastAPI
2
- from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
3
  from pydantic import BaseModel
4
  import torch
5
 
6
  app = FastAPI()
7
- model_name = "SuperAnnotate/ai-detector"
8
  torch.manual_seed(42) # For reproducibility
9
- tokenizer = AutoTokenizer.from_pretrained(model_name)
10
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
11
- detector = pipeline("text-classification", model=model, tokenizer=tokenizer)
12
 
13
  class TextInput(BaseModel):
14
  text: str
 
1
  from fastapi import FastAPI
2
+ from transformers import pipeline
3
  from pydantic import BaseModel
4
  import torch
5
 
6
  app = FastAPI()
 
7
  torch.manual_seed(42) # For reproducibility
8
+ detector = pipeline("text-classification", model="akshayvkt/detect-ai-text")
 
 
9
 
10
  class TextInput(BaseModel):
11
  text: str
requirements.txt CHANGED
@@ -2,4 +2,5 @@ transformers==4.44.2
2
  torch==2.4.1
3
  fastapi==0.115.2
4
  uvicorn==0.32.0
5
- pydantic==2.9.2
 
 
2
  torch==2.4.1
3
  fastapi==0.115.2
4
  uvicorn==0.32.0
5
+ pydantic==2.9.2
6
+ numpy==2.0.2