Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,35 +2,52 @@ import gradio as gr
|
|
2 |
from transformers import ViltProcessor, ViltForQuestionAnswering
|
3 |
import torch
|
4 |
|
5 |
-
# Load example images
|
6 |
-
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
7 |
-
|
8 |
# Load Vilt
|
9 |
vilt_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
10 |
vilt_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
|
|
11 |
def vilt_vqa(image, question):
|
12 |
-
# prepare inputs
|
13 |
inputs = vilt_processor(image, question, return_tensors="pt")
|
14 |
-
|
15 |
-
# forward pass
|
16 |
with torch.no_grad():
|
17 |
outputs = vilt_model(**inputs)
|
18 |
-
|
19 |
logits = outputs.logits
|
20 |
idx = logits.argmax(-1).item()
|
21 |
answer = vilt_model.config.id2label[idx]
|
22 |
return answer
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
image = gr.inputs.Image(type="pil")
|
25 |
question = gr.inputs.Textbox(label="Question")
|
26 |
answer = gr.outputs.Textbox(label="Predicted answer")
|
27 |
examples = [["cats.jpg", "What are the animals here called?"]]
|
28 |
|
29 |
-
|
30 |
-
description = "Demo for Multilingual VQA. Upload an image, type a question, click 'submit', or click one of the examples to load them."
|
31 |
-
article = "article"
|
32 |
-
|
33 |
-
interface = gr.Interface(fn=vilt_vqa,
|
34 |
inputs=[image, question],
|
35 |
outputs=answer,
|
36 |
examples=examples,
|
|
|
2 |
from transformers import ViltProcessor, ViltForQuestionAnswering
|
3 |
import torch
|
4 |
|
|
|
|
|
|
|
5 |
# Load Vilt
|
6 |
vilt_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
7 |
vilt_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
8 |
+
|
9 |
def vilt_vqa(image, question):
|
|
|
10 |
inputs = vilt_processor(image, question, return_tensors="pt")
|
|
|
|
|
11 |
with torch.no_grad():
|
12 |
outputs = vilt_model(**inputs)
|
|
|
13 |
logits = outputs.logits
|
14 |
idx = logits.argmax(-1).item()
|
15 |
answer = vilt_model.config.id2label[idx]
|
16 |
return answer
|
17 |
|
18 |
+
# Load FLAN-T5
|
19 |
+
t5_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
|
20 |
+
t5_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large", device_map="auto")
|
21 |
+
|
22 |
+
def flan_t5_complete_sentence(question, answer):
|
23 |
+
input_text = f"A question: {question} An incomplete answer: {answer}. Based on these, answer the question with a complete sentence without extra information."
|
24 |
+
print(input_text)
|
25 |
+
inputs = t5_tokenizer(input_text, return_tensors="pt")
|
26 |
+
outputs = t5_model.generate(**inputs, max_length=50)
|
27 |
+
result_sentence = t5_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
28 |
+
return result_sentence
|
29 |
+
|
30 |
+
# Main function
|
31 |
+
def vqa_main(image, question):
|
32 |
+
incomplete_answer = vilt_vqa(image, question)
|
33 |
+
complete_answer = flan_t5_complete_sentence(question, answer)
|
34 |
+
return complete_answer
|
35 |
+
|
36 |
+
# Home page text
|
37 |
+
title = "Interactive demo: Multilingual VQA"
|
38 |
+
description = "Demo for Multilingual VQA. Upload an image, type a question, click 'submit', or click one of the examples to load them."
|
39 |
+
article = "article goes here"
|
40 |
+
|
41 |
+
# Load example images
|
42 |
+
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
43 |
+
|
44 |
+
# Define home page variables
|
45 |
image = gr.inputs.Image(type="pil")
|
46 |
question = gr.inputs.Textbox(label="Question")
|
47 |
answer = gr.outputs.Textbox(label="Predicted answer")
|
48 |
examples = [["cats.jpg", "What are the animals here called?"]]
|
49 |
|
50 |
+
interface = gr.Interface(fn=vqa_main,
|
|
|
|
|
|
|
|
|
51 |
inputs=[image, question],
|
52 |
outputs=answer,
|
53 |
examples=examples,
|