Spaces:
Running
Running
Irpan
commited on
Commit
·
64f507f
1
Parent(s):
e98f157
- app.py +38 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import ViltProcessor, ViltForQuestionAnswering
|
3 |
+
import torch
|
4 |
+
|
5 |
+
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
6 |
+
|
7 |
+
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
8 |
+
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
9 |
+
|
10 |
+
def answer_question(image, text):
|
11 |
+
encoding = processor(image, text, return_tensors="pt")
|
12 |
+
|
13 |
+
# forward pass
|
14 |
+
with torch.no_grad():
|
15 |
+
outputs = model(**encoding)
|
16 |
+
|
17 |
+
logits = outputs.logits
|
18 |
+
idx = logits.argmax(-1).item()
|
19 |
+
predicted_answer = model.config.id2label[idx]
|
20 |
+
|
21 |
+
return predicted_answer
|
22 |
+
|
23 |
+
image = gr.inputs.Image(type="pil")
|
24 |
+
question = gr.inputs.Textbox(label="Question")
|
25 |
+
answer = gr.outputs.Textbox(label="Predicted answer")
|
26 |
+
examples = [["cats.jpg", "How many cats are there?"]]
|
27 |
+
|
28 |
+
title = "Cross-lingual VQA"
|
29 |
+
description = "ViLT (Vision and Language Transformer), fine-tuned on VQAv2 "
|
30 |
+
|
31 |
+
interface = gr.Interface(fn=answer_question,
|
32 |
+
inputs=[image, question],
|
33 |
+
outputs=answer,
|
34 |
+
examples=examples,
|
35 |
+
title=title,
|
36 |
+
description=description,
|
37 |
+
enable_queue=True)
|
38 |
+
interface.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
git+https://github.com/huggingface/transformers.git
|