Spaces:
Running
Running
import gradio as gr | |
from transformers import ViltProcessor, ViltForQuestionAnswering | |
import torch | |
from googletrans import Translator | |
from googletrans import LANGCODES | |
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') | |
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
def answer_question(image, text): | |
encoding = processor(image, text, return_tensors="pt") | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
logits = outputs.logits | |
idx = logits.argmax(-1).item() | |
predicted_answer = model.config.id2label[idx] | |
return predicted_answer | |
image = gr.inputs.Image(type="pil") | |
question = gr.inputs.Textbox(label="Question") | |
answer = gr.outputs.Textbox(label="Predicted answer") | |
examples = [["cats.jpg", "How many cats are there, in French?"]] | |
title = "Cross-lingual VQA" | |
description = "ViLT (Vision and Language Transformer), fine-tuned on VQAv2 " | |
interface = gr.Interface(fn=answer_question, | |
inputs=[image, question], | |
outputs=answer, | |
examples=examples, | |
title=title, | |
description=description, | |
enable_queue=True) | |
interface.launch(debug=True) |