Spaces:
Runtime error
Runtime error
import re | |
import gradio as gr | |
from PIL import Image, ImageDraw | |
import math | |
import torch | |
import html | |
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
pretrained_repo_name = "ivelin/donut-refexp-draft-precision2decs" | |
print(f"Loading model checkpoint: {pretrained_repo_name}") | |
processor = DonutProcessor.from_pretrained(pretrained_repo_name) | |
model = VisionEncoderDecoderModel.from_pretrained(pretrained_repo_name) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
def process_refexp(image: Image, prompt: str): | |
print(f"(image, prompt): {image}, {prompt}") | |
# trim prompt to 80 characters and normalize to lowercase | |
prompt = prompt[:80].lower() | |
# prepare encoder inputs | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
# prepare decoder inputs | |
task_prompt = "<s_refexp><s_prompt>{user_input}</s_prompt><s_target_bounding_box>" | |
prompt = task_prompt.replace("{user_input}", prompt) | |
decoder_input_ids = processor.tokenizer( | |
prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
# generate answer | |
outputs = model.generate( | |
pixel_values.to(device), | |
decoder_input_ids=decoder_input_ids.to(device), | |
max_length=model.decoder.config.max_position_embeddings, | |
early_stopping=True, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
num_beams=1, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
# postprocess | |
sequence = processor.batch_decode(outputs.sequences)[0] | |
print(fr"predicted decoder sequence: {html.escape(sequence)}") | |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace( | |
processor.tokenizer.pad_token, "") | |
# remove first task start token | |
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() | |
print( | |
fr"predicted decoder sequence before token2json: {html.escape(sequence)}") | |
seqjson = processor.token2json(sequence) | |
# safeguard in case predicted sequence does not include a target_bounding_box token | |
bbox = seqjson.get('target_bounding_box') | |
if bbox is None: | |
print( | |
f"token2bbox seq has no predicted target_bounding_box, seq:{seq}") | |
bbox = {"xmin": 0, "ymin": 0, "xmax": 0, "ymax": 0} | |
return bbox | |
print(f"predicted bounding box with text coordinates: {bbox}") | |
# safeguard in case text prediction is missing some bounding box coordinates | |
# or coordinates are not valid numeric values | |
try: | |
xmin = float(bbox.get("xmin", 0)) | |
except ValueError: | |
xmin = 0 | |
try: | |
ymin = float(bbox.get("ymin", 0)) | |
except ValueError: | |
ymin = 0 | |
try: | |
xmax = float(bbox.get("xmax", 1)) | |
except ValueError: | |
xmax = 1 | |
try: | |
ymax = float(bbox.get("ymax", 1)) | |
except ValueError: | |
ymax = 1 | |
# replace str with float coords | |
bbox = {"xmin": xmin, "ymin": ymin, "xmax": xmax, | |
"ymax": ymax, "decoder output sequence": sequence} | |
print(f"predicted bounding box with float coordinates: {bbox}") | |
print(f"image object: {image}") | |
print(f"image size: {image.size}") | |
width, height = image.size | |
print(f"image width, height: {width, height}") | |
print(f"processed prompt: {prompt}") | |
# safeguard in case text prediction is missing some bounding box coordinates | |
xmin = math.floor(width*bbox["xmin"]) | |
ymin = math.floor(height*bbox["ymin"]) | |
xmax = math.floor(width*bbox["xmax"]) | |
ymax = math.floor(height*bbox["ymax"]) | |
print( | |
f"to image pixel values: xmin, ymin, xmax, ymax: {xmin, ymin, xmax, ymax}") | |
shape = [(xmin, ymin), (xmax, ymax)] | |
# deaw bbox rectangle | |
img1 = ImageDraw.Draw(image) | |
img1.rectangle(shape, outline="green", width=5) | |
img1.rectangle(shape, outline="white", width=2) | |
return image, bbox | |
title = "Demo: Donut π© for UI RefExp (by GuardianUI)" | |
description = "Gradio Demo for Donut RefExp task, an instance of `VisionEncoderDecoderModel` fine-tuned on [UIBert RefExp](https://huggingface.co/datasets/ivelin/ui_refexp_saved) Dataset (UI Referring Expression). To use it, simply upload your image and type a prompt and click 'submit', or click one of the examples to load them. See the model training <a href='https://colab.research.google.com/github/ivelin/donut_ui_refexp/blob/main/Fine_tune_Donut_on_UI_RefExp.ipynb' target='_parent'>Colab Notebook</a> for this space. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.15664' target='_blank'>Donut: OCR-free Document Understanding Transformer</a> | <a href='https://github.com/clovaai/donut' target='_blank'>Github Repo</a></p>" | |
examples = [["example_1.jpg", "select the setting icon from top right corner"], | |
["example_1.jpg", "click on down arrow beside the entertainment"], | |
["example_1.jpg", "select the down arrow button beside lifestyle"], | |
["example_1.jpg", "click on the image beside the option traffic"], | |
["example_2.jpg", "enter the text field next to the name"], | |
["example_2.jpg", "click on green color button"], | |
["example_2.jpg", "click on text which is beside call now"], | |
["example_2.jpg", "click on more button"], | |
["example_3.jpg", "select the third row first image"], | |
["example_3.jpg", "click the tick mark on the first image"], | |
["example_3.jpg", "select the ninth image"], | |
["example_3.jpg", "select the add icon"], | |
["example_3.jpg", "click the first image"], | |
["example_3.jpg", "select the first column second image"], | |
["example_3.jpg", "select the bottom right image"], | |
["example_3.jpg", "select the second row second image"], | |
] | |
demo = gr.Interface(fn=process_refexp, | |
inputs=[gr.Image(type="pil"), "text"], | |
outputs=[gr.Image(type="pil"), "json"], | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
# caching examples inference takes too long to start space after app change commit | |
cache_examples=False | |
) | |
demo.launch() | |