ivcvy commited on
Commit
b0f8552
·
verified ·
1 Parent(s): 1cedb04

app and assets

Browse files
Files changed (4) hide show
  1. .gitattributes +1 -0
  2. app.py +286 -0
  3. data/colon.csv +3 -0
  4. requirements.txt +7 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ data/colon.csv filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+ from streamlit_calendar import calendar
4
+ from streamlit_timeline import st_timeline
5
+ import numpy as np
6
+ from sklearn.cluster import KMeans
7
+ import altair as alt
8
+
9
+ st.set_page_config(layout="wide")
10
+
11
+ # load data
12
+ df = pd.read_csv("data/colon.csv")
13
+ df = df.dropna(subset=["DESCRIPTION", "START"])
14
+ df["BIRTHDATE"] = pd.to_datetime(df["BIRTHDATE"], errors="coerce").dt.date
15
+ df["START"] = pd.to_datetime(df["START"], errors="coerce").dt.date
16
+ df["STOP"] = pd.to_datetime(df["STOP"], errors="coerce").dt.date
17
+ df = df.sort_values(by=["ID", "START", "DESCRIPTION"], ascending=[True, False, True])
18
+ unique_ids = df["ID"].unique()
19
+
20
+ # inject custom CSS to set the width of the sidebar
21
+ st.markdown(
22
+ """
23
+ <style>
24
+ section[data-testid="stSidebar"] {
25
+ width: 600px !important; # Set the width to your desired value
26
+ }
27
+ </style>
28
+ """,
29
+ unsafe_allow_html=True,
30
+ )
31
+
32
+ # pick id
33
+ st.sidebar.title("Patient information")
34
+ st.session_state.id = st.sidebar.selectbox(
35
+ "Select patient ID:",
36
+ unique_ids,
37
+ index=0,
38
+ placeholder="Type or select ID...",
39
+ )
40
+
41
+ # sidebar
42
+ name = (
43
+ df.loc[df["ID"] == st.session_state.id, "NAME"].iloc[0]
44
+ if not df.loc[df["ID"] == st.session_state.id, "NAME"].empty
45
+ else None
46
+ )
47
+
48
+ gender = (
49
+ df.loc[df["ID"] == st.session_state.id, "GENDER"].iloc[0]
50
+ if not df.loc[df["ID"] == st.session_state.id, "GENDER"].empty
51
+ else None
52
+ )
53
+ st.sidebar.write("Name:", name, f" ({gender})")
54
+
55
+ bd = (
56
+ df.loc[df["ID"] == st.session_state.id, "BIRTHDATE"].iloc[0]
57
+ if not df.loc[df["ID"] == st.session_state.id, "BIRTHDATE"].empty
58
+ else None
59
+ )
60
+ st.sidebar.write("Birthdate:", bd)
61
+
62
+ race = (
63
+ df.loc[df["ID"] == st.session_state.id, "RACE"].iloc[0]
64
+ if not df.loc[df["ID"] == st.session_state.id, "RACE"].empty
65
+ else None
66
+ )
67
+
68
+ etn = (
69
+ df.loc[df["ID"] == st.session_state.id, "ETHNICITY"].iloc[0]
70
+ if not df.loc[df["ID"] == st.session_state.id, "ETHNICITY"].empty
71
+ else None
72
+ )
73
+ st.sidebar.write("Race/Ethnicity:", race, " /", etn)
74
+
75
+ mar = (
76
+ df.loc[df["ID"] == st.session_state.id, "MARITAL"].iloc[0]
77
+ if not df.loc[df["ID"] == st.session_state.id, "MARITAL"].empty
78
+ else None
79
+ )
80
+ st.sidebar.write("Marital status:", mar)
81
+
82
+ adr = (
83
+ df.loc[df["ID"] == st.session_state.id, "ADDRESS"].iloc[0]
84
+ if not df.loc[df["ID"] == st.session_state.id, "ADDRESS"].empty
85
+ else None
86
+ )
87
+ st.sidebar.write("Address:", adr)
88
+
89
+ # filter data
90
+ st.session_state.filtered_df = df[df["ID"] == st.session_state.id]
91
+ try:
92
+ st.session_state.initial_date = (
93
+ st.session_state.filtered_df["START"].max().strftime("%Y-%m-%d")
94
+ )
95
+ except:
96
+ pass
97
+
98
+ if not st.session_state.filtered_df.empty:
99
+ st.session_state.events = [
100
+ {
101
+ "title": row["DESCRIPTION"],
102
+ "start": row["START"].strftime("%Y-%m-%d"),
103
+ "end": row["START"].strftime("%Y-%m-%d"),
104
+ }
105
+ for _, row in st.session_state.filtered_df.iterrows()
106
+ ]
107
+
108
+ # calendar
109
+ mode = st.sidebar.selectbox(
110
+ "Calendar Mode:",
111
+ (
112
+ "daygrid",
113
+ "list",
114
+ ),
115
+ )
116
+
117
+ calendar_options = {
118
+ "editable": "true",
119
+ "navLinks": "true",
120
+ "selectable": "true",
121
+ }
122
+
123
+ if mode == "daygrid":
124
+ calendar_options = {
125
+ **calendar_options,
126
+ "headerToolbar": {
127
+ "left": "today prev,next",
128
+ "center": "title",
129
+ "right": "dayGridDay,dayGridWeek,dayGridMonth",
130
+ },
131
+ "initialDate": st.session_state.initial_date,
132
+ "initialView": "dayGridMonth",
133
+ }
134
+
135
+ elif mode == "list":
136
+ calendar_options = {
137
+ **calendar_options,
138
+ "initialDate": st.session_state.initial_date,
139
+ "initialView": "listMonth",
140
+ }
141
+
142
+ with st.sidebar:
143
+ st.session_state.state = calendar(
144
+ events=st.session_state.get("events", st.session_state.events),
145
+ options=calendar_options,
146
+ custom_css="""
147
+ .fc-event-past {
148
+ opacity: 0.8;
149
+ }
150
+ .fc-event-time {
151
+ font-style: italic;
152
+ }
153
+ .fc-event-title {
154
+ font-weight: 700;
155
+ }
156
+ .fc-toolbar-title {
157
+ font-size: 2rem;
158
+ }
159
+ .fc-button {
160
+ background-color: #4CAF50;
161
+ color: #ffffff;
162
+ border: none;
163
+ cursor: pointer;
164
+ }
165
+ .fc-button:hover {
166
+ background-color: #45a049;
167
+ }
168
+ .fc-button-primary {
169
+ background-color: #008CBA;
170
+ }
171
+ .fc-button-primary:hover {
172
+ background-color: #007bb5;
173
+ }
174
+ .fc-button-secondary {
175
+ background-color: #e7e7e7;
176
+ color: black;
177
+ }
178
+ .fc-button-secondary:hover {
179
+ background-color: #ddd;
180
+ }
181
+ """,
182
+ key=mode,
183
+ )
184
+
185
+
186
+ if st.session_state.state.get("eventsSet") is not None:
187
+ st.session_state["events"] = st.session_state.state["eventsSet"]
188
+
189
+ # clustering
190
+ col1, col2 = st.columns([1, 2])
191
+
192
+ with col1:
193
+ # training on lung data
194
+ # add slider to select number of clusters
195
+ st.session_state.n_clusters = st.slider("Select number of clusters", 2, 5, 5)
196
+ if st.button("Train model"):
197
+ df = df[["ID", "START", "STOP", "DESCRIPTION"]]
198
+ st.session_state.df = df.groupby("ID").agg({"DESCRIPTION": list}).reset_index()
199
+ st.session_state.df["DESCRIPTION"] = st.session_state.df["DESCRIPTION"].apply(
200
+ np.array
201
+ )
202
+ training_data = st.session_state.df["DESCRIPTION"].tolist()
203
+
204
+ transformed_data = []
205
+ for array in training_data:
206
+ unique_values = np.unique(array)
207
+ value_to_int = {value: idx + 1 for idx, value in enumerate(unique_values)}
208
+ transformed_array = np.vectorize(value_to_int.get)(array)
209
+ transformed_data.append(transformed_array)
210
+
211
+ max_length = max(len(array) for array in transformed_data)
212
+ padded_data = [
213
+ np.pad(array, (0, max_length - len(array)), "constant")
214
+ for array in transformed_data
215
+ ]
216
+ padded_data_array = np.vstack(padded_data)
217
+
218
+ st.session_state.kmeans = KMeans(
219
+ n_clusters=st.session_state.n_clusters, random_state=42
220
+ )
221
+ st.session_state.cluster_labels = st.session_state.kmeans.fit_predict(
222
+ padded_data_array
223
+ )
224
+ st.write("Model trained successfully!")
225
+ # clustering
226
+ if st.button("Show cluster"):
227
+ st.session_state.idx = st.session_state.df.index[
228
+ st.session_state.df["ID"] == st.session_state.id
229
+ ]
230
+ st.write("Cluster:", st.session_state.cluster_labels[st.session_state.idx])
231
+
232
+ try:
233
+ st.session_state.label_counts = (
234
+ pd.Series(st.session_state.cluster_labels).value_counts().sort_index()
235
+ )
236
+ st.session_state.cluster_df = pd.DataFrame(
237
+ {
238
+ "Cluster Label": st.session_state.label_counts.index,
239
+ "Count": st.session_state.label_counts.values,
240
+ }
241
+ )
242
+ # st.bar_chart(st.session_state.cluster_df)
243
+ chart = (
244
+ alt.Chart(st.session_state.cluster_df)
245
+ .mark_bar()
246
+ .encode(x="Cluster Label:O", y="Count:Q")
247
+ .properties(title="Number of people per cluster")
248
+ .configure_legend(disable=True) # Disable the legend
249
+ )
250
+ st.altair_chart(chart, use_container_width=True)
251
+ except:
252
+ pass
253
+
254
+ with col2:
255
+ try:
256
+ st.session_state.selected_cluster = st.selectbox(
257
+ "Select cluster to view descriptions",
258
+ np.unique(st.session_state.cluster_labels),
259
+ 0,
260
+ )
261
+ st.session_state.indices = np.where(
262
+ st.session_state.cluster_labels == st.session_state.selected_cluster
263
+ )[0]
264
+ st.session_state.seq_df = st.session_state.df.loc[st.session_state.indices]
265
+ st.write(f"Descriptions for cluster {st.session_state.selected_cluster}:")
266
+ st.dataframe(
267
+ st.session_state.seq_df["DESCRIPTION"],
268
+ use_container_width=True,
269
+ )
270
+ except:
271
+ pass
272
+
273
+ # timeline
274
+ if not st.session_state.filtered_df.empty:
275
+ st.session_state.item = [
276
+ {
277
+ "id": id,
278
+ "content": row["DESCRIPTION"],
279
+ "start": row["START"].strftime("%Y-%m-%d"),
280
+ }
281
+ for id, (_, row) in enumerate(st.session_state.filtered_df.iterrows())
282
+ ]
283
+
284
+ st.session_state.timeline = st_timeline(
285
+ st.session_state.item, groups=[], options={}, height="300px", width="100%"
286
+ )
data/colon.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d82d1155a2a33b6af26913fcc928f7ccf7b38c982618a54abd7084f1b4289400
3
+ size 29236073
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ altair==5.3.0
2
+ numpy==2.0.1
3
+ pandas==2.2.2
4
+ scikit-learn==1.5.1
5
+ streamlit==1.37.0
6
+ streamlit-calendar==1.2.0
7
+ streamlit-vis-timeline==0.3.0