app and assets
Browse files- .gitattributes +1 -0
- app.py +286 -0
- data/colon.csv +3 -0
- requirements.txt +7 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
data/colon.csv filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
from streamlit_calendar import calendar
|
4 |
+
from streamlit_timeline import st_timeline
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.cluster import KMeans
|
7 |
+
import altair as alt
|
8 |
+
|
9 |
+
st.set_page_config(layout="wide")
|
10 |
+
|
11 |
+
# load data
|
12 |
+
df = pd.read_csv("data/colon.csv")
|
13 |
+
df = df.dropna(subset=["DESCRIPTION", "START"])
|
14 |
+
df["BIRTHDATE"] = pd.to_datetime(df["BIRTHDATE"], errors="coerce").dt.date
|
15 |
+
df["START"] = pd.to_datetime(df["START"], errors="coerce").dt.date
|
16 |
+
df["STOP"] = pd.to_datetime(df["STOP"], errors="coerce").dt.date
|
17 |
+
df = df.sort_values(by=["ID", "START", "DESCRIPTION"], ascending=[True, False, True])
|
18 |
+
unique_ids = df["ID"].unique()
|
19 |
+
|
20 |
+
# inject custom CSS to set the width of the sidebar
|
21 |
+
st.markdown(
|
22 |
+
"""
|
23 |
+
<style>
|
24 |
+
section[data-testid="stSidebar"] {
|
25 |
+
width: 600px !important; # Set the width to your desired value
|
26 |
+
}
|
27 |
+
</style>
|
28 |
+
""",
|
29 |
+
unsafe_allow_html=True,
|
30 |
+
)
|
31 |
+
|
32 |
+
# pick id
|
33 |
+
st.sidebar.title("Patient information")
|
34 |
+
st.session_state.id = st.sidebar.selectbox(
|
35 |
+
"Select patient ID:",
|
36 |
+
unique_ids,
|
37 |
+
index=0,
|
38 |
+
placeholder="Type or select ID...",
|
39 |
+
)
|
40 |
+
|
41 |
+
# sidebar
|
42 |
+
name = (
|
43 |
+
df.loc[df["ID"] == st.session_state.id, "NAME"].iloc[0]
|
44 |
+
if not df.loc[df["ID"] == st.session_state.id, "NAME"].empty
|
45 |
+
else None
|
46 |
+
)
|
47 |
+
|
48 |
+
gender = (
|
49 |
+
df.loc[df["ID"] == st.session_state.id, "GENDER"].iloc[0]
|
50 |
+
if not df.loc[df["ID"] == st.session_state.id, "GENDER"].empty
|
51 |
+
else None
|
52 |
+
)
|
53 |
+
st.sidebar.write("Name:", name, f" ({gender})")
|
54 |
+
|
55 |
+
bd = (
|
56 |
+
df.loc[df["ID"] == st.session_state.id, "BIRTHDATE"].iloc[0]
|
57 |
+
if not df.loc[df["ID"] == st.session_state.id, "BIRTHDATE"].empty
|
58 |
+
else None
|
59 |
+
)
|
60 |
+
st.sidebar.write("Birthdate:", bd)
|
61 |
+
|
62 |
+
race = (
|
63 |
+
df.loc[df["ID"] == st.session_state.id, "RACE"].iloc[0]
|
64 |
+
if not df.loc[df["ID"] == st.session_state.id, "RACE"].empty
|
65 |
+
else None
|
66 |
+
)
|
67 |
+
|
68 |
+
etn = (
|
69 |
+
df.loc[df["ID"] == st.session_state.id, "ETHNICITY"].iloc[0]
|
70 |
+
if not df.loc[df["ID"] == st.session_state.id, "ETHNICITY"].empty
|
71 |
+
else None
|
72 |
+
)
|
73 |
+
st.sidebar.write("Race/Ethnicity:", race, " /", etn)
|
74 |
+
|
75 |
+
mar = (
|
76 |
+
df.loc[df["ID"] == st.session_state.id, "MARITAL"].iloc[0]
|
77 |
+
if not df.loc[df["ID"] == st.session_state.id, "MARITAL"].empty
|
78 |
+
else None
|
79 |
+
)
|
80 |
+
st.sidebar.write("Marital status:", mar)
|
81 |
+
|
82 |
+
adr = (
|
83 |
+
df.loc[df["ID"] == st.session_state.id, "ADDRESS"].iloc[0]
|
84 |
+
if not df.loc[df["ID"] == st.session_state.id, "ADDRESS"].empty
|
85 |
+
else None
|
86 |
+
)
|
87 |
+
st.sidebar.write("Address:", adr)
|
88 |
+
|
89 |
+
# filter data
|
90 |
+
st.session_state.filtered_df = df[df["ID"] == st.session_state.id]
|
91 |
+
try:
|
92 |
+
st.session_state.initial_date = (
|
93 |
+
st.session_state.filtered_df["START"].max().strftime("%Y-%m-%d")
|
94 |
+
)
|
95 |
+
except:
|
96 |
+
pass
|
97 |
+
|
98 |
+
if not st.session_state.filtered_df.empty:
|
99 |
+
st.session_state.events = [
|
100 |
+
{
|
101 |
+
"title": row["DESCRIPTION"],
|
102 |
+
"start": row["START"].strftime("%Y-%m-%d"),
|
103 |
+
"end": row["START"].strftime("%Y-%m-%d"),
|
104 |
+
}
|
105 |
+
for _, row in st.session_state.filtered_df.iterrows()
|
106 |
+
]
|
107 |
+
|
108 |
+
# calendar
|
109 |
+
mode = st.sidebar.selectbox(
|
110 |
+
"Calendar Mode:",
|
111 |
+
(
|
112 |
+
"daygrid",
|
113 |
+
"list",
|
114 |
+
),
|
115 |
+
)
|
116 |
+
|
117 |
+
calendar_options = {
|
118 |
+
"editable": "true",
|
119 |
+
"navLinks": "true",
|
120 |
+
"selectable": "true",
|
121 |
+
}
|
122 |
+
|
123 |
+
if mode == "daygrid":
|
124 |
+
calendar_options = {
|
125 |
+
**calendar_options,
|
126 |
+
"headerToolbar": {
|
127 |
+
"left": "today prev,next",
|
128 |
+
"center": "title",
|
129 |
+
"right": "dayGridDay,dayGridWeek,dayGridMonth",
|
130 |
+
},
|
131 |
+
"initialDate": st.session_state.initial_date,
|
132 |
+
"initialView": "dayGridMonth",
|
133 |
+
}
|
134 |
+
|
135 |
+
elif mode == "list":
|
136 |
+
calendar_options = {
|
137 |
+
**calendar_options,
|
138 |
+
"initialDate": st.session_state.initial_date,
|
139 |
+
"initialView": "listMonth",
|
140 |
+
}
|
141 |
+
|
142 |
+
with st.sidebar:
|
143 |
+
st.session_state.state = calendar(
|
144 |
+
events=st.session_state.get("events", st.session_state.events),
|
145 |
+
options=calendar_options,
|
146 |
+
custom_css="""
|
147 |
+
.fc-event-past {
|
148 |
+
opacity: 0.8;
|
149 |
+
}
|
150 |
+
.fc-event-time {
|
151 |
+
font-style: italic;
|
152 |
+
}
|
153 |
+
.fc-event-title {
|
154 |
+
font-weight: 700;
|
155 |
+
}
|
156 |
+
.fc-toolbar-title {
|
157 |
+
font-size: 2rem;
|
158 |
+
}
|
159 |
+
.fc-button {
|
160 |
+
background-color: #4CAF50;
|
161 |
+
color: #ffffff;
|
162 |
+
border: none;
|
163 |
+
cursor: pointer;
|
164 |
+
}
|
165 |
+
.fc-button:hover {
|
166 |
+
background-color: #45a049;
|
167 |
+
}
|
168 |
+
.fc-button-primary {
|
169 |
+
background-color: #008CBA;
|
170 |
+
}
|
171 |
+
.fc-button-primary:hover {
|
172 |
+
background-color: #007bb5;
|
173 |
+
}
|
174 |
+
.fc-button-secondary {
|
175 |
+
background-color: #e7e7e7;
|
176 |
+
color: black;
|
177 |
+
}
|
178 |
+
.fc-button-secondary:hover {
|
179 |
+
background-color: #ddd;
|
180 |
+
}
|
181 |
+
""",
|
182 |
+
key=mode,
|
183 |
+
)
|
184 |
+
|
185 |
+
|
186 |
+
if st.session_state.state.get("eventsSet") is not None:
|
187 |
+
st.session_state["events"] = st.session_state.state["eventsSet"]
|
188 |
+
|
189 |
+
# clustering
|
190 |
+
col1, col2 = st.columns([1, 2])
|
191 |
+
|
192 |
+
with col1:
|
193 |
+
# training on lung data
|
194 |
+
# add slider to select number of clusters
|
195 |
+
st.session_state.n_clusters = st.slider("Select number of clusters", 2, 5, 5)
|
196 |
+
if st.button("Train model"):
|
197 |
+
df = df[["ID", "START", "STOP", "DESCRIPTION"]]
|
198 |
+
st.session_state.df = df.groupby("ID").agg({"DESCRIPTION": list}).reset_index()
|
199 |
+
st.session_state.df["DESCRIPTION"] = st.session_state.df["DESCRIPTION"].apply(
|
200 |
+
np.array
|
201 |
+
)
|
202 |
+
training_data = st.session_state.df["DESCRIPTION"].tolist()
|
203 |
+
|
204 |
+
transformed_data = []
|
205 |
+
for array in training_data:
|
206 |
+
unique_values = np.unique(array)
|
207 |
+
value_to_int = {value: idx + 1 for idx, value in enumerate(unique_values)}
|
208 |
+
transformed_array = np.vectorize(value_to_int.get)(array)
|
209 |
+
transformed_data.append(transformed_array)
|
210 |
+
|
211 |
+
max_length = max(len(array) for array in transformed_data)
|
212 |
+
padded_data = [
|
213 |
+
np.pad(array, (0, max_length - len(array)), "constant")
|
214 |
+
for array in transformed_data
|
215 |
+
]
|
216 |
+
padded_data_array = np.vstack(padded_data)
|
217 |
+
|
218 |
+
st.session_state.kmeans = KMeans(
|
219 |
+
n_clusters=st.session_state.n_clusters, random_state=42
|
220 |
+
)
|
221 |
+
st.session_state.cluster_labels = st.session_state.kmeans.fit_predict(
|
222 |
+
padded_data_array
|
223 |
+
)
|
224 |
+
st.write("Model trained successfully!")
|
225 |
+
# clustering
|
226 |
+
if st.button("Show cluster"):
|
227 |
+
st.session_state.idx = st.session_state.df.index[
|
228 |
+
st.session_state.df["ID"] == st.session_state.id
|
229 |
+
]
|
230 |
+
st.write("Cluster:", st.session_state.cluster_labels[st.session_state.idx])
|
231 |
+
|
232 |
+
try:
|
233 |
+
st.session_state.label_counts = (
|
234 |
+
pd.Series(st.session_state.cluster_labels).value_counts().sort_index()
|
235 |
+
)
|
236 |
+
st.session_state.cluster_df = pd.DataFrame(
|
237 |
+
{
|
238 |
+
"Cluster Label": st.session_state.label_counts.index,
|
239 |
+
"Count": st.session_state.label_counts.values,
|
240 |
+
}
|
241 |
+
)
|
242 |
+
# st.bar_chart(st.session_state.cluster_df)
|
243 |
+
chart = (
|
244 |
+
alt.Chart(st.session_state.cluster_df)
|
245 |
+
.mark_bar()
|
246 |
+
.encode(x="Cluster Label:O", y="Count:Q")
|
247 |
+
.properties(title="Number of people per cluster")
|
248 |
+
.configure_legend(disable=True) # Disable the legend
|
249 |
+
)
|
250 |
+
st.altair_chart(chart, use_container_width=True)
|
251 |
+
except:
|
252 |
+
pass
|
253 |
+
|
254 |
+
with col2:
|
255 |
+
try:
|
256 |
+
st.session_state.selected_cluster = st.selectbox(
|
257 |
+
"Select cluster to view descriptions",
|
258 |
+
np.unique(st.session_state.cluster_labels),
|
259 |
+
0,
|
260 |
+
)
|
261 |
+
st.session_state.indices = np.where(
|
262 |
+
st.session_state.cluster_labels == st.session_state.selected_cluster
|
263 |
+
)[0]
|
264 |
+
st.session_state.seq_df = st.session_state.df.loc[st.session_state.indices]
|
265 |
+
st.write(f"Descriptions for cluster {st.session_state.selected_cluster}:")
|
266 |
+
st.dataframe(
|
267 |
+
st.session_state.seq_df["DESCRIPTION"],
|
268 |
+
use_container_width=True,
|
269 |
+
)
|
270 |
+
except:
|
271 |
+
pass
|
272 |
+
|
273 |
+
# timeline
|
274 |
+
if not st.session_state.filtered_df.empty:
|
275 |
+
st.session_state.item = [
|
276 |
+
{
|
277 |
+
"id": id,
|
278 |
+
"content": row["DESCRIPTION"],
|
279 |
+
"start": row["START"].strftime("%Y-%m-%d"),
|
280 |
+
}
|
281 |
+
for id, (_, row) in enumerate(st.session_state.filtered_df.iterrows())
|
282 |
+
]
|
283 |
+
|
284 |
+
st.session_state.timeline = st_timeline(
|
285 |
+
st.session_state.item, groups=[], options={}, height="300px", width="100%"
|
286 |
+
)
|
data/colon.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d82d1155a2a33b6af26913fcc928f7ccf7b38c982618a54abd7084f1b4289400
|
3 |
+
size 29236073
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
altair==5.3.0
|
2 |
+
numpy==2.0.1
|
3 |
+
pandas==2.2.2
|
4 |
+
scikit-learn==1.5.1
|
5 |
+
streamlit==1.37.0
|
6 |
+
streamlit-calendar==1.2.0
|
7 |
+
streamlit-vis-timeline==0.3.0
|