Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import pytest | |
import torch | |
from parameterized import parameterized | |
from transformers.utils import is_peft_available | |
from trl.import_utils import is_diffusers_available | |
from .testing_utils import require_diffusers | |
if is_diffusers_available() and is_peft_available(): | |
from trl import AlignPropConfig, AlignPropTrainer, DefaultDDPOStableDiffusionPipeline | |
def scorer_function(images, prompts, metadata): | |
return torch.randn(1) * 3.0, {} | |
def prompt_function(): | |
return ("cabbages", {}) | |
class AlignPropTrainerTester(unittest.TestCase): | |
""" | |
Test the AlignPropTrainer class. | |
""" | |
def setUp(self): | |
training_args = AlignPropConfig( | |
num_epochs=2, | |
train_gradient_accumulation_steps=1, | |
train_batch_size=2, | |
truncated_backprop_rand=False, | |
mixed_precision=None, | |
save_freq=1000000, | |
) | |
pretrained_model = "hf-internal-testing/tiny-stable-diffusion-torch" | |
pretrained_revision = "main" | |
pipeline_with_lora = DefaultDDPOStableDiffusionPipeline( | |
pretrained_model, pretrained_model_revision=pretrained_revision, use_lora=True | |
) | |
pipeline_without_lora = DefaultDDPOStableDiffusionPipeline( | |
pretrained_model, pretrained_model_revision=pretrained_revision, use_lora=False | |
) | |
self.trainer_with_lora = AlignPropTrainer(training_args, scorer_function, prompt_function, pipeline_with_lora) | |
self.trainer_without_lora = AlignPropTrainer( | |
training_args, scorer_function, prompt_function, pipeline_without_lora | |
) | |
def tearDown(self) -> None: | |
gc.collect() | |
def test_generate_samples(self, use_lora): | |
trainer = self.trainer_with_lora if use_lora else self.trainer_without_lora | |
output_pairs = trainer._generate_samples(2, with_grad=True) | |
self.assertEqual(len(output_pairs.keys()), 3) | |
self.assertEqual(len(output_pairs["images"]), 2) | |
def test_calculate_loss(self, use_lora): | |
trainer = self.trainer_with_lora if use_lora else self.trainer_without_lora | |
sample = trainer._generate_samples(2) | |
images = sample["images"] | |
prompts = sample["prompts"] | |
self.assertTupleEqual(images.shape, (2, 3, 128, 128)) | |
self.assertEqual(len(prompts), 2) | |
rewards = trainer.compute_rewards(sample) | |
loss = trainer.calculate_loss(rewards) | |
self.assertTrue(torch.isfinite(loss.cpu())) | |