Upload 7 files
Browse files- README.md +6 -5
- app.py +94 -0
- packages.txt +1 -0
- requirements.txt +13 -0
- test0.jpeg +0 -0
- test1.jpeg +0 -0
- test2.jpeg +0 -0
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.5.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces
|
|
|
1 |
---
|
2 |
+
title: Receipt Extractor
|
3 |
+
emoji: π
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.5.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system('git clone https://github.com/facebookresearch/detectron2.git')
|
3 |
+
os.system('pip install -e detectron2')
|
4 |
+
os.system("git clone https://github.com/microsoft/unilm.git")
|
5 |
+
os.system("sed -i 's/from collections import Iterable/from collections.abc import Iterable/' unilm/dit/object_detection/ditod/table_evaluation/data_structure.py")
|
6 |
+
os.system("curl -LJ -o publaynet_dit-b_cascade.pth 'https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_cascade.pth?sv=2022-11-02&ss=b&srt=o&sp=r&se=2033-06-08T16:48:15Z&st=2023-06-08T08:48:15Z&spr=https&sig=a9VXrihTzbWyVfaIDlIT1Z0FoR1073VB0RLQUMuudD4%3D'")
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append("unilm")
|
10 |
+
sys.path.append("detectron2")
|
11 |
+
|
12 |
+
## install PyTesseract
|
13 |
+
os.system('pip install -q pytesseract')
|
14 |
+
|
15 |
+
import gradio as gr
|
16 |
+
import numpy as np
|
17 |
+
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
|
18 |
+
from datasets import load_dataset
|
19 |
+
from PIL import Image, ImageDraw, ImageFont, ImageColor
|
20 |
+
|
21 |
+
processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
|
22 |
+
model = LayoutLMv3ForTokenClassification.from_pretrained("nielsr/layoutlmv3-finetuned-cord")
|
23 |
+
|
24 |
+
dataset = load_dataset("ivan-wald/cord-layoutlmv3", split="test", trust_remote_code=True)
|
25 |
+
image = Image.open("./test0.jpeg")
|
26 |
+
labels = dataset.features['ner_tags'].feature.names
|
27 |
+
id2label = {v: k for v, k in enumerate(labels)}
|
28 |
+
|
29 |
+
#Need to get discrete colors for each labels
|
30 |
+
label_ints = np.random.randint(0, len(ImageColor.colormap.items()), 61)
|
31 |
+
label_color_pil = [k for k,_ in ImageColor.colormap.items()]
|
32 |
+
label_color = [label_color_pil[i] for i in label_ints]
|
33 |
+
label2color = {}
|
34 |
+
for k,v in id2label.items():
|
35 |
+
label2color[v[2:]]=label_color[k]
|
36 |
+
|
37 |
+
def unnormalize_box(bbox, width, height):
|
38 |
+
return [
|
39 |
+
width * (bbox[0] / 1000),
|
40 |
+
height * (bbox[1] / 1000),
|
41 |
+
width * (bbox[2] / 1000),
|
42 |
+
height * (bbox[3] / 1000),
|
43 |
+
]
|
44 |
+
|
45 |
+
def iob_to_label(label):
|
46 |
+
label = label[2:]
|
47 |
+
if not label:
|
48 |
+
return 'other'
|
49 |
+
return label
|
50 |
+
|
51 |
+
def process_image(image):
|
52 |
+
width, height = image.size
|
53 |
+
|
54 |
+
# encode
|
55 |
+
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
|
56 |
+
offset_mapping = encoding.pop('offset_mapping')
|
57 |
+
|
58 |
+
# forward pass
|
59 |
+
outputs = model(**encoding)
|
60 |
+
|
61 |
+
# get predictions
|
62 |
+
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
63 |
+
token_boxes = encoding.bbox.squeeze().tolist()
|
64 |
+
|
65 |
+
# only keep non-subword predictions
|
66 |
+
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
|
67 |
+
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
|
68 |
+
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
|
69 |
+
|
70 |
+
# draw predictions over the image
|
71 |
+
draw = ImageDraw.Draw(image)
|
72 |
+
font = ImageFont.load_default()
|
73 |
+
for prediction, box in zip(true_predictions, true_boxes):
|
74 |
+
predicted_label = iob_to_label(prediction) #.lower()
|
75 |
+
draw.rectangle(box, outline=label2color[predicted_label])
|
76 |
+
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
|
77 |
+
|
78 |
+
return image
|
79 |
+
|
80 |
+
|
81 |
+
title = "LayoutLMv3 - CORD"
|
82 |
+
description = "description"
|
83 |
+
article = "article"
|
84 |
+
examples =[['test0.jpeg'],['test1.jpeg'],['test2.jpeg']]
|
85 |
+
css = ".output-image, .input-image, .image-preview {height: 600px !important}"
|
86 |
+
|
87 |
+
iface = gr.Interface(fn=process_image,
|
88 |
+
inputs=gr.Image(type="pil"),
|
89 |
+
outputs=gr.Image(type="pil", label="annotated image"),
|
90 |
+
title=title,
|
91 |
+
examples=examples,
|
92 |
+
css=css)
|
93 |
+
|
94 |
+
iface.launch(debug=True)
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
tesseract-ocr
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
Pillow
|
3 |
+
datasets
|
4 |
+
https://github.com/huggingface/transformers/archive/main.zip
|
5 |
+
pyyaml==5.1
|
6 |
+
torch==1.11.0
|
7 |
+
torchvision==0.12.0
|
8 |
+
|
9 |
+
numpy<2
|
10 |
+
scipy
|
11 |
+
shapely
|
12 |
+
timm
|
13 |
+
opencv-python
|
test0.jpeg
ADDED
test1.jpeg
ADDED
test2.jpeg
ADDED