Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,21 +14,66 @@ def predict_segmentation(image):
|
|
14 |
SIZE_X = 128
|
15 |
SIZE_Y = 128
|
16 |
|
17 |
-
img = cv2.resize(image, (SIZE_Y, SIZE_X))
|
18 |
-
img = np.expand_dims(img, axis=2)
|
19 |
-
img = normalize(img, axis=1)
|
20 |
|
21 |
-
|
22 |
-
img = np.expand_dims(img, axis=0)
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
predicted_img = np.argmax(prediction, axis=3)[0, :, :]
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
# Load the model
|
31 |
-
model = tf.keras.models.load_model("model100.h5", custom_objects={'dice_coef': dice_coef})
|
32 |
|
33 |
# Gradio Interface
|
34 |
iface = gr.Interface(
|
|
|
14 |
SIZE_X = 128
|
15 |
SIZE_Y = 128
|
16 |
|
|
|
|
|
|
|
17 |
|
18 |
+
train_images = []
|
|
|
19 |
|
20 |
+
img = cv2.imread(image, 0)
|
21 |
+
img = cv2.resize(img, (SIZE_Y, SIZE_X))
|
22 |
+
train_images.append(img)
|
23 |
+
|
24 |
+
train_images = np.array(train_images)
|
25 |
+
train_images = np.expand_dims(train_images, axis=3)
|
26 |
+
train_images = normalize(train_images, axis=1)
|
27 |
+
X_test = train_images
|
28 |
+
|
29 |
+
custom_objects = {'dice_coef': dice_coef}
|
30 |
+
with tf.keras.utils.custom_object_scope(custom_objects):
|
31 |
+
model = tf.keras.models.load_model("model100.h5")
|
32 |
+
|
33 |
+
|
34 |
+
# Normalize the test image
|
35 |
+
test_img = X_test[0]
|
36 |
+
test_img_norm = test_img[:, :, 0][:, :, None]
|
37 |
+
test_img_input = np.expand_dims(test_img_norm, 0)
|
38 |
+
|
39 |
+
# Get the prediction
|
40 |
+
prediction = model.predict(test_img_input)
|
41 |
predicted_img = np.argmax(prediction, axis=3)[0, :, :]
|
42 |
|
43 |
+
# Create an RGB image with a transparent background
|
44 |
+
rgba_img = np.zeros((predicted_img.shape[0], predicted_img.shape[1], 4))
|
45 |
+
|
46 |
+
# Define the color for the segmented area (e.g., red)
|
47 |
+
segmented_color = [1, 0, 0] # Red color in RGB
|
48 |
+
|
49 |
+
# Set the segmented area to the desired color
|
50 |
+
for i in range(3):
|
51 |
+
rgba_img[:, :, i] = np.where(predicted_img > 0, segmented_color[i], 0)
|
52 |
+
|
53 |
+
# Create an alpha channel: 1 where there is segmentation, 0 otherwise
|
54 |
+
alpha_channel = np.where(predicted_img > 0, 1, 0)
|
55 |
+
rgba_img[:, :, 3] = alpha_channel
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
# img = cv2.resize(image, (SIZE_Y, SIZE_X))
|
65 |
+
# img = np.expand_dims(img, axis=2)
|
66 |
+
# img = normalize(img, axis=1)
|
67 |
+
|
68 |
+
# # Prepare image for prediction
|
69 |
+
# img = np.expand_dims(img, axis=0)
|
70 |
+
|
71 |
+
# # Predict
|
72 |
+
# prediction = model.predict(img)
|
73 |
+
# predicted_img = np.argmax(prediction, axis=3)[0, :, :]
|
74 |
+
|
75 |
+
return rgba_img
|
76 |
|
|
|
|
|
77 |
|
78 |
# Gradio Interface
|
79 |
iface = gr.Interface(
|