PDF-Falcon / ingest.py
itsmeadarsh's picture
Systems Ready!
91d7875
raw
history blame
2.88 kB
import os
import click
from typing import List
from utils import xlxs_to_csv
from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.docstore.document import Document
from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY
from langchain.embeddings import HuggingFaceInstructEmbeddings
def load_single_document(file_path: str) -> Document:
# Loads a single document from a file path
if file_path.endswith(".txt"):
loader = TextLoader(file_path, encoding="utf8")
elif file_path.endswith(".pdf"):
loader = PDFMinerLoader(file_path)
elif file_path.endswith(".csv"):
loader = CSVLoader(file_path)
return loader.load()[0]
def load_documents(source_dir: str) -> List[Document]:
# Loads all documents from source documents directory
all_files = os.listdir(source_dir)
docs = []
for file_path in all_files:
if file_path[-4:] == 'xlsx':
for doc in xlxs_to_csv(f"{source_dir}/{file_path}"):
docs.append(load_single_document(doc))
elif file_path[-4:] in ['.txt', '.pdf', '.csv']:
docs.append(load_single_document(f"{source_dir}/{file_path}"))
return docs
# return [load_single_document(f"{source_dir}/{file_path}") for file_path in all_files if
# file_path[-4:] in ['.txt', '.pdf', '.csv']]
# @click.command()
# @click.option('--device_type', default='gpu', help='device to run on, select gpu or cpu')
# def main(device_type, ):
# # load the instructorEmbeddings
# if device_type in ['cpu', 'CPU']:
# device='cpu'
# else:
# device='cuda'
@click.command()
@click.option('--device_type', default='cuda', help='device to run on, select gpu, cpu or mps')
def main(device_type, ):
# load the instructorEmbeddings
if device_type in ['cpu', 'CPU']:
device='cpu'
elif device_type in ['mps', 'MPS']:
device='mps'
else:
device='cuda'
#  Load documents and split in chunks
print(f"Loading documents from {SOURCE_DIRECTORY}")
documents = load_documents(SOURCE_DIRECTORY)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
print(f"Loaded {len(documents)} documents from {SOURCE_DIRECTORY}")
print(f"Split into {len(texts)} chunks of text")
# Create embeddings
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base",
model_kwargs={"device": device})
db = Chroma.from_documents(texts, embeddings, persist_directory=PERSIST_DIRECTORY, client_settings=CHROMA_SETTINGS)
db.persist()
db = None
if __name__ == "__main__":
main()