Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torchvision.transforms as transforms
|
| 3 |
+
from torchvision.transforms import InterpolationMode
|
| 4 |
+
import torch
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
|
| 7 |
+
from .model import Model
|
| 8 |
+
|
| 9 |
+
# Load Model
|
| 10 |
+
model_path = hf_hub_download(
|
| 11 |
+
repo_id="itserr/exvoto_classifier_convnext_base_224",
|
| 12 |
+
filename="model.pt"
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
model = Model('convnext_base')
|
| 16 |
+
ckpt = torch.load(model_path, map_location=torch.device("cpu")) # Ensure compatibility
|
| 17 |
+
model.load_state_dict(ckpt['model'])
|
| 18 |
+
|
| 19 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 20 |
+
model.to(device)
|
| 21 |
+
model.eval()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# Image Transformations
|
| 25 |
+
transform = transforms.Compose([
|
| 26 |
+
transforms.Resize(size=(224,224), interpolation=InterpolationMode.BICUBIC),
|
| 27 |
+
transforms.ToTensor(),
|
| 28 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 29 |
+
])
|
| 30 |
+
|
| 31 |
+
# Classification Function
|
| 32 |
+
def classify_img(img, threshold):
|
| 33 |
+
classification_threshold = threshold
|
| 34 |
+
img_tensor = transform(img).unsqueeze(0).to(device)
|
| 35 |
+
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
pred = model(img_tensor)
|
| 38 |
+
score = torch.sigmoid(pred).item()
|
| 39 |
+
|
| 40 |
+
# Determine Prediction
|
| 41 |
+
if score >= classification_threshold:
|
| 42 |
+
label = "✅ This is an **Ex-Voto** image!"
|
| 43 |
+
else:
|
| 44 |
+
label = "❌ This is **NOT** an Ex-Voto image."
|
| 45 |
+
|
| 46 |
+
# Format Confidence Score
|
| 47 |
+
confidence = f"The probability that the image is an ex-voto is: {score:.2%}"
|
| 48 |
+
return label, confidence
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# # **🎨 Customized Interface**
|
| 52 |
+
demo = gr.Interface(
|
| 53 |
+
fn=classify_img,
|
| 54 |
+
inputs=[
|
| 55 |
+
gr.Image(type="pil"),
|
| 56 |
+
gr.Slider(minimum=0.5, maximum=1.0, value=0.7, step=0.1, label="Classification Threshold")
|
| 57 |
+
],
|
| 58 |
+
outputs=[
|
| 59 |
+
gr.Textbox(label="Prediction", interactive=False),
|
| 60 |
+
gr.Textbox(label="Confidence Score", interactive=False),
|
| 61 |
+
],
|
| 62 |
+
title="🖼️✟ Ex-Voto Image Classifier",
|
| 63 |
+
description="📸 **Upload an image** to check if it's an **Ex-Voto** painting!",
|
| 64 |
+
theme="soft",
|
| 65 |
+
allow_flagging="never",
|
| 66 |
+
live=False, # Avoids auto-updating; requires a button click
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Launch App
|
| 70 |
+
demo.launch()
|