mcpc_dashboard / marginal_cpc_calculator.py
itheenigma's picture
fixed code to get marginal cpc curve to start from origin and moved graphs to show cpc even when breakeven is not reached
7d3e93d
raw
history blame
13.8 kB
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
import pandas as pd
def hello():
print ("world!")
# def polynomial_func(x, a,b,c,d):
# y = a * x - b * x**2 + c * x**3 + d
def polynomial_func(x, a,b,c):
y = a * x - b * x**2 + c * x**3
return y
def get_country_metrics(country,min_date='2023-07-01',max_date='2023-09-01'):
df_country = pd.read_csv('ecom_cvr_aov_by_month.csv',parse_dates=['DATE'])
df_country['CVR']=df_country['CVR'].apply(lambda x: x.replace("%","")).astype(float)/100
df_country['PC']=df_country['PC'].apply(lambda x: x.replace("%","")).astype(float)/100
if country in df_country.Country.unique():
return df_country[(df_country.Country==country) &
(df_country.DATE>=min_date) &
(df_country.DATE<max_date)].groupby('Country')[['CVR','AOV','PC']].mean().values[0]
else:
return df_country.loc[(df_country.DATE>=min_date) &
(df_country.DATE<max_date),['CVR','AOV','PC']].mean().values
def get_comparison_dates(min_date,max_date,period='previous_period'):
'''
period is either previous period or last year
'''
if period=='previous_period':
delta = (pd.to_datetime(max_date).to_period('M') - pd.to_datetime(min_date).to_period('M')).n
else:
delta = 12
mid,mad=(pd.DataFrame([pd.to_datetime(min_date), pd.to_datetime(max_date)]) - pd.DateOffset(months=delta)).values
return pd.to_datetime(mid[0]).strftime('%Y-%m-%d'),pd.to_datetime(mad[0]).strftime('%Y-%m-%d')
def calculate_max_spend(df,min_date,max_date,
revenue_or_ebitda='revenue',
country='DE',
platform='meta',
sub_channel='',
pprint=False):
# consider only ads with positive click outcomes and sort by cpc
if sub_channel=='':
df_temp = df[(df.clicks>0) & (df.country==country) &
(df.platform==platform) &
(df['date']>min_date) & (df['date']<max_date)
].sort_values('cpc').reset_index()
else:
df_temp = df[(df.clicks>0) & (df.country==country) &
(df.platform==platform) &
(df.sub_channel==sub_channel) &
(df['date']>min_date) & (df['date']<max_date)
].sort_values('cpc').reset_index()
# calculate cumulative spend and cumulative clicks
df_temp['cum_cost']=df_temp['cost'].cumsum()
df_temp['cum_clicks']=df_temp['clicks'].cumsum()
df_temp['cum_cpc']=df_temp['cum_cost']/df_temp['cum_clicks']
# calculate revenue and income
cvr,aov,pc = get_country_metrics(country,min_date,max_date)
df_temp['cum_revenue']=df_temp['cum_clicks']*cvr*aov
# at some stage, the ebitda becomes negative
if revenue_or_ebitda=='revenue':
df_temp['cum_income'] = df_temp['cum_revenue']-df_temp['cum_cost']
else:
df_temp['cum_income'] = df_temp['cum_revenue'] * pc - df_temp['cum_cost']
# calculate marginal cpc and marginal income
df_temp['marginal_cpc'] = (df_temp.cum_cost - df_temp.cum_cost.shift(1))/(df_temp.cum_clicks - df_temp.cum_clicks.shift(1))
df_temp['marginal_income'] = df_temp.cum_income - df_temp.cum_income.shift(1) - df_temp['marginal_cpc']
try:
output_msg=[]
plt.style.use('fivethirtyeight')
fig = plt.figure(figsize=(18,6))
# params, cv = curve_fit(polynomial_func, df_temp['cum_cost'],df_temp['marginal_income'].fillna(0), p0=(1, 1,1,1))
# a,b,c,d = params
params, cv = curve_fit(polynomial_func, df_temp['cum_cost'],df_temp['marginal_income'].fillna(0), p0=(1, 1,1))
a,b,c = params
# determine quality of the fit
# squaredDiffs = np.square(df_temp['marginal_income'].fillna(0) - polynomial_func(df_temp['cum_cost'], a,b,c,d))
squaredDiffs = np.square(df_temp['marginal_income'].fillna(0) - polynomial_func(df_temp['cum_cost'], a,b,c))
squaredDiffsFromMean = np.square(df_temp['marginal_income'].fillna(0) - np.mean(df_temp['marginal_income'].fillna(0)))
rSquared = 1 - np.sum(squaredDiffs) / np.sum(squaredDiffsFromMean)
if pprint==True:
output_msg.append(f"R² of fit for marginal income = {rSquared}")
# print(f"R² of fit for marginal income = {rSquared}")
# inspect the parameters
if pprint==True:
# output_msg.append(f"Marginal income equation Y = {a} * x - {b} * x^2 + {c} * x^3 + {d}")
output_msg.append(f"Marginal income equation Y = {a} * x - {b} * x^2 + {c} * x^3")
# calculate max costs when it becomes negative ROAS
# df_marginal = pd.DataFrame(zip(np.arange(500000),
# polynomial_func(np.arange(500000), a,b,c,d)
# )).rename(columns={0:'cumulative_cost',1:'marginal_income'})
df_marginal = pd.DataFrame(zip(np.arange(500000),
polynomial_func(np.arange(500000), a,b,c)
)).rename(columns={0:'cumulative_cost',1:'marginal_income'})
# join actuals to get the full picture
_ = df_temp[['cost','cpc','cum_cost', 'cum_clicks', 'cum_cpc', 'cum_revenue', 'cum_income']]
# converting cost to integer in order to join with the marginal dataset
_['cum_cost']=_['cum_cost'].apply(lambda x:np.round(x,0).astype(int))
df_marginal = pd.merge(df_marginal,
_.groupby('cum_cost')[
['cost','cpc','cum_clicks', 'cum_cpc', 'cum_revenue', 'cum_income']
].max().reset_index().rename(columns={#'cum_cost':'cumulative_cost',
'cpc':'marginal_cpc'}),
how='left',left_on='cumulative_cost',right_on='cum_cost').fillna(method='ffill')
max_spend_threshold = df_marginal.loc[(df_marginal.marginal_income.shift(1)>=0) & (df_marginal.marginal_income.shift(-1)<0),'cumulative_cost'].min()
highest_amount_spent = df_marginal.cum_cost.max()
except:
if pprint==True:
output_msg.append("Something happened during marginal CPC and equation calculations. We couldn't calculate max_spend_threshold and highest_amount_spent...")
max_spend_threshold=np.nan
highest_amount_spent=np.nan
rSquared=np.nan
total_negative_roas_spend=np.nan
if pd.notnull(max_spend_threshold):
if (max_spend_threshold>highest_amount_spent):
marginal_cpc,cum_clicks,cum_cpc,cum_revenue = np.nan, np.nan, np.nan, np.nan
if pprint==True:
output_msg.append(f"Highest amount spent during this period is: {highest_amount_spent}")
else:
marginal_cpc,cum_clicks,cum_cpc,cum_revenue = df_marginal.loc[df_marginal.cumulative_cost==max_spend_threshold,
['marginal_cpc','cum_clicks','cum_cpc','cum_revenue']].values[0]
marginal_cpc_HAS,cum_clicks_HAS,cum_cpc_HAS,cum_revenue_HAS = df_marginal.loc[df_marginal.cumulative_cost==highest_amount_spent,
['marginal_cpc','cum_clicks','cum_cpc','cum_revenue']].values[0]
# any spend beyond the max_spend_threshold needs to be saved
total_negative_roas_spend = df_temp.loc[df_temp.cum_cost>max_spend_threshold,['cost']].sum().values[0]
# # so to get the max cost for this tactic or strategy,
if pprint==True:
output_msg.append(f"Max spend threshold is: {max_spend_threshold}")
output_msg.append(f"For this spend, marginal_cpc={marginal_cpc}, cumulative_clicks={cum_clicks}, Average_cpc={cum_cpc}, cumulative_revenue={cum_revenue}")
output_msg.append(f"Amount spent during this period is: {highest_amount_spent}")
output_msg.append(f"For this spend, marginal_cpc={marginal_cpc_HAS}, cumulative_clicks={cum_clicks_HAS}, Average_cpc={cum_cpc_HAS}, cumulative_revenue={cum_revenue_HAS}")
output_msg.append(f"Total amount spent in negative ROAS={total_negative_roas_spend}")
# print (output_msg)
else:
marginal_cpc,cum_clicks,cum_cpc,cum_revenue = np.nan, np.nan, np.nan, np.nan
total_negative_roas_spend=np.nan
if pprint==True:
output_msg.append(f"Not enough data for mCPC analysis. Max threshold resulted in {max_spend_threshold}. Highest amount spent during this period is: {highest_amount_spent}")
print (f"Not enough data for mCPC analysis. Max threshold resulted in {max_spend_threshold}. Highest amount spent during this period is: {highest_amount_spent}")
try:
ax1 = fig.add_subplot(121);
plt.scatter(df_temp['cum_cost'],df_temp['cpc'],color='black');
plt.axhline(1*cvr*aov,color='red',linestyle='--');plt.axhline(1*cvr*aov*pc,color='blue',linestyle='--');
plt.annotate(f'Any clicks above {np.round(cvr*aov,2)} SEK cpc has negative ROAS \n Above {np.round(cvr*aov*pc,2)} SEK is negative PC',size=12,xy=[0,40], color="black")
plt.xlabel('Cumulative ad spend that month (in SEK)'); plt.ylabel('Cost per individual click (in SEK)')
# ax2.axes.get_xaxis().set_visible(False)
ax1.title.set_text('CPC for at different spend levels');
except:
pass
try:
ax2 = fig.add_subplot(122)
plt.plot(df_temp['cum_cost'],df_temp['marginal_income'], '.', label="data", color='r')
# plt.plot(df_temp['cum_cost'], polynomial_func(df_temp['cum_cost'], a,b,c,d), '--', color='blue', label="fitted")
plt.plot(df_temp['cum_cost'], polynomial_func(df_temp['cum_cost'], a,b,c), '--', color='blue', label="fitted")
plt.xlabel('cumulative cost'); plt.ylabel('marginal income')
ax2.title.set_text('Net income at different spend levels')
except:
pass
values = (max_spend_threshold,highest_amount_spent,total_negative_roas_spend,marginal_cpc,cum_clicks,cum_cpc,cum_revenue,rSquared)
return fig,output_msg,values
# return fig,output_msg,values,df_marginal
def loop_mCPC_countries(df,min_date,max_date,
country_list=['UK', 'DE', 'US', 'NL', 'SE', 'CH', 'BE', 'EU', 'FR', 'AU'],
platform='meta'):
country_flag = ''
df_result = pd.DataFrame()
for i,d in df[(df.index>min_date) &
(df.index<max_date) & (df.platform==platform) &
(df.country.isin(country_list))].groupby(['country','sub_channel'])['cost'].sum().reset_index().iterrows():
if country_flag!=d['country']:
country_flag=d['country']
print (f"Processing {country_flag}...")
# run numbers for prior delta
mid, mad = get_comparison_dates(min_date,max_date,period='previous_period')
mcost = calculate_max_spend(
df,min_date=mid,max_date=mad,
revenue_or_ebitda='revenue',
country=d['country'],
platform=platform,
sub_channel=d['sub_channel'],
pprint=False)
# rerun values for LY this time
mid, mad = get_comparison_dates(min_date,max_date,period='LY')
mcost_ly = calculate_max_spend(
df,min_date=mid,max_date=mad,
revenue_or_ebitda='revenue',
country=d['country'],
platform=platform,
sub_channel=d['sub_channel'],
pprint=False)
# max_spend_threshold,highest_amount_spent,marginal_cpc,cum_clicks,cum_cpc,cum_revenue,rSquared = \
# combine the 2 results
df_result = pd.concat([df_result,
pd.Series({'platform':platform,
'country':d['country'],
'sub_channel':d['sub_channel'],
'budget':'',
'max_spend_PP':mcost[0],
'amt_spent_PP':mcost[1],
'rSquared_PP':mcost[6], # can you trust this mcpc analysis for this market?
'max_spend_LY':mcost_ly[0],
'amt_spent_LY':mcost_ly[1],
'rSquared_LY':mcost_ly[6], # can you trust this mcpc analysis for this market?
'cpc_PP':mcost[2],
'cpc_LY':mcost_ly[2],
'cum_clicks_PP':mcost[3],
'cum_clicks_LY':mcost_ly[3],
'cum_cpc_PP':mcost[4],
'cum_cpc_LY':mcost_ly[4],
})],axis=1)
df_result = df_result.T
df_result['diff']=df_result['max_spend_PP']-df_result['amt_spent_PP']
print (f"Total impact due to unrealized revenue and negative ROAS spend between planned and threshold costs is {(df_result['diff'].apply(abs)*-1).sum()} SEK")
return df_result.sort_values('diff',ascending=True).reset_index(drop=True)