Spaces:
Sleeping
Sleeping
it@M InnovationLab
commited on
Commit
·
e76c1b2
1
Parent(s):
9ed8e63
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,67 +9,81 @@ transform = torchvision.transforms.ToPILImage()
|
|
| 9 |
seg_model = YOLO("yolov8m-seg.pt")
|
| 10 |
lp_model = YOLO("yolov8m_lp.pt")
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
| 18 |
people_mask = torch.any(person_masks, dim=0).to(torch.uint8) * 255
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
blurred = image.filter(ImageFilter.GaussianBlur(30))
|
| 48 |
anonymized = Image.composite(image, blurred, mask)
|
| 49 |
## TODO: Tempfile statt einem generischen File
|
| 50 |
anonymized.save("anon.JPG")
|
| 51 |
return "anon.JPG"
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
demo_upload = gr.Interface(
|
| 60 |
-
|
|
|
|
| 61 |
inputs=gr.Image(type="pil"),
|
| 62 |
-
outputs=gr.Image()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
)
|
| 64 |
|
| 65 |
-
|
| 66 |
-
# interface_list=[demo_live, demo_upload],
|
| 67 |
-
# tab_names=["Webcam", "Bild hochladen"],
|
| 68 |
-
# title="Image Anonymizer"
|
| 69 |
-
# )
|
| 70 |
-
|
| 71 |
-
# print(__name__)
|
| 72 |
-
# demo_upload.launch(server_name="localhost", server_port=8080)
|
| 73 |
-
# demo.launch(server_name="localhost", server_port=8080)
|
| 74 |
-
|
| 75 |
demo_upload.launch()
|
|
|
|
| 9 |
seg_model = YOLO("yolov8m-seg.pt")
|
| 10 |
lp_model = YOLO("yolov8m_lp.pt")
|
| 11 |
|
| 12 |
+
|
| 13 |
+
def detect(image):
|
| 14 |
+
seg_result = seg_model(image, device="CPU")[0]
|
| 15 |
+
seg_masks = seg_result.masks.data
|
| 16 |
+
seg_clss = seg_result.boxes.cls
|
| 17 |
+
seg_boxes = seg_result.boxes.data
|
| 18 |
+
|
| 19 |
+
person_indices = torch.where(seg_clss == 0)
|
| 20 |
+
person_masks = seg_masks[person_indices]
|
| 21 |
people_mask = torch.any(person_masks, dim=0).to(torch.uint8) * 255
|
| 22 |
+
people_mask = transform(~people_mask)
|
| 23 |
+
people_mask = people_mask.resize((image.width, image.height), resample=Image.Resampling.BILINEAR)
|
| 24 |
+
|
| 25 |
+
vehicle_classes = [2, 3, 5, 7]
|
| 26 |
+
license_plates = list()
|
| 27 |
+
|
| 28 |
+
for seg_box in seg_boxes:
|
| 29 |
+
if seg_box[5] in vehicle_classes:
|
| 30 |
+
vehicle_box = seg_box[:4].to(torch.int32)
|
| 31 |
+
vehicle_crop = image.crop(vehicle_box.tolist())
|
| 32 |
+
lp_result = lp_model(vehicle_crop, imgsz=(vehicle_crop.height, vehicle_crop.width), device="cpu")[0]
|
| 33 |
+
lp_boxes = lp_result.boxes.data[:, :4]
|
| 34 |
+
vehicle_offset = torch.cat((vehicle_box[:2], vehicle_box[:2]))
|
| 35 |
+
for lp_box in lp_boxes:
|
| 36 |
+
license_plates.append(torch.add(lp_box, vehicle_offset))
|
| 37 |
+
|
| 38 |
+
lp_mask = Image.new(mode="L", size=image.size, color=255)
|
| 39 |
+
draw = ImageDraw.Draw(lp_mask)
|
| 40 |
+
|
| 41 |
+
for license_plate in license_plates:
|
| 42 |
+
draw.rectangle(license_plate.tolist(), fill = 0)
|
| 43 |
+
|
| 44 |
+
combined_mask = Image.fromarray(np.minimum.reduce([np.array(m) for m in [people_mask, lp_mask]]))
|
| 45 |
+
return combined_mask
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def test_comb(image):
|
| 49 |
+
mask = detect(image)
|
| 50 |
blurred = image.filter(ImageFilter.GaussianBlur(30))
|
| 51 |
anonymized = Image.composite(image, blurred, mask)
|
| 52 |
## TODO: Tempfile statt einem generischen File
|
| 53 |
anonymized.save("anon.JPG")
|
| 54 |
return "anon.JPG"
|
| 55 |
|
| 56 |
+
|
| 57 |
+
css = """
|
| 58 |
+
P { text-align: center }
|
| 59 |
+
H3 { text-align: center }
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
description = """
|
| 63 |
+
### ML-Prototyp zur Anonymisierung von Bildern
|
| 64 |
+
Es werden Personen sowie Kennzeichen zensiert.
|
| 65 |
+
Große Bilder können einige Zeit benötigen.
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
article = """
|
| 69 |
+
Nutzt YOLOv8-Modelle zur Erkennung / Segmentierung der Bilder.
|
| 70 |
+
|
| 71 |
+
Code: https://huggingface.co/spaces/it-at-m/image-anonymizer/tree/main
|
| 72 |
+
|
| 73 |
+
Ein Prototyp des it@M InnovationLab (itm.innolab@muenchen.de)
|
| 74 |
+
"""
|
| 75 |
|
| 76 |
demo_upload = gr.Interface(
|
| 77 |
+
title="Image Anonymizer",
|
| 78 |
+
fn=test_comb,
|
| 79 |
inputs=gr.Image(type="pil"),
|
| 80 |
+
outputs=gr.Image(),
|
| 81 |
+
allow_flagging="never",
|
| 82 |
+
examples="examples",
|
| 83 |
+
description=description,
|
| 84 |
+
article=article,
|
| 85 |
+
css=css
|
| 86 |
)
|
| 87 |
|
| 88 |
+
demo_upload.queue(concurrency_count=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
demo_upload.launch()
|