Spaces:
Runtime error
Runtime error
""" | |
main model | |
""" | |
import torch | |
from torch import nn | |
import numpy as np | |
import torch.nn.functional as F | |
from einops import rearrange | |
import os | |
from .utils import length_to_mask, load_model_and_alphabet_core | |
class EsmModel(nn.Module): | |
def __init__(self, hidden_size=64, num_labels=2, projection_size=24, head=12): | |
super().__init__() | |
basedir = os.path.abspath(os.path.dirname(__file__)) | |
self.esm, self.alphabet = load_model_and_alphabet_core(os.path.join(basedir, 'args.pt')) | |
self.num_labels = num_labels | |
self.head = head | |
self.hidden_size = hidden_size | |
self.projection = nn.Linear(hidden_size, projection_size) | |
self.cov_1 = nn.Conv1d(projection_size, projection_size, kernel_size=3, padding='same') | |
self.cov_2 = nn.Conv1d(projection_size, int(projection_size/2), kernel_size=1, padding='same') | |
# self.gating = nn.Linear(projection_size, projection_size) | |
self.W = nn.Parameter(torch.randn((head, int(projection_size/2)))) | |
# self.mu = nn.Parameter(torch.randn((1, 768))) | |
self.fcn = nn.Sequential(nn.Linear(int(projection_size/2)*head, int(projection_size/2)), | |
nn.ReLU(), nn.Linear(int(projection_size/2), num_labels)) | |
def forward(self, peptide_list, device='cpu'): | |
peptide_length = [len(i[1]) for i in peptide_list] | |
batch_converter = self.alphabet.get_batch_converter() | |
_, _, batch_tokens = batch_converter(peptide_list) | |
batch_tokens = batch_tokens.to(device) | |
protein_dict = self.esm(batch_tokens, repr_layers=[12], return_contacts=False) | |
protein_embeddings = protein_dict["representations"][12][:, 1:, :] | |
protein_embed = rearrange(protein_embeddings, 'b l (h d)-> (b h) l d', h=self.head) | |
representations = self.projection(protein_embed) | |
representations = rearrange(representations, 'b l d -> b d l') | |
representation_cov = F.relu(self.cov_1(representations)) | |
representation_cov = F.relu(self.cov_2(representation_cov)) | |
representations = rearrange(representation_cov, '(b h) d l -> b h l d', h=self.head) | |
att = torch.einsum('bhld,hd->bhl', representations, self.W) | |
mask = length_to_mask(torch.tensor(peptide_length)).to(device).int() | |
att = att.masked_fill(mask.unsqueeze(1)==0, -np.inf) | |
att= F.softmax(att, dim=-1) | |
representations = rearrange(representations * att.unsqueeze(-1), 'b h l d -> b l (h d)') | |
representations = torch.sum(representations, dim=1) | |
return self.fcn(representations), att | |