isom5240grp21
commited on
Commit
•
330f24c
1
Parent(s):
a9c2e7f
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the sentiment analysis pipeline
|
5 |
+
sentiment_classifier = pipeline("text-classification", model="isom5240grp21/finetuned_model3")
|
6 |
+
|
7 |
+
# Load the keyword extraction pipeline
|
8 |
+
keyword_extractor = pipeline("text2text-generation", model="ilsilfverskiold/bart_keywords")
|
9 |
+
|
10 |
+
def main():
|
11 |
+
st.title("Hotel Review Keywords Extractor")
|
12 |
+
|
13 |
+
# User input for the review
|
14 |
+
review = st.text_area("Enter your review:")
|
15 |
+
|
16 |
+
if st.button("Analyze"):
|
17 |
+
if review:
|
18 |
+
# Perform sentiment analysis
|
19 |
+
sentiment = sentiment_classifier(review)
|
20 |
+
sentiment_label = sentiment[0]['label']
|
21 |
+
|
22 |
+
# Perform keyword extraction
|
23 |
+
keywords = keyword_extractor(review)
|
24 |
+
generated_text = keywords[0]['generated_text']
|
25 |
+
|
26 |
+
# Display the result based on sentiment
|
27 |
+
if sentiment_label == 'LABEL_0': # Assuming LABEL_0 indicates negative sentiment
|
28 |
+
st.write(f"The hotel did bad in: {generated_text}")
|
29 |
+
else: # Assuming LABEL_1 indicates positive sentiment
|
30 |
+
st.write(f"The hotel did good in: {generated_text}")
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
main()
|