Spaces:
Sleeping
Sleeping
import json | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
import requests | |
from rag import run_rag | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def chat( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
message =run_rag(message, history) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += str(token) | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
chatbot = gr.Chatbot( | |
label="Retrieval Augmented Generation News & Finance", | |
# avatar_images=[None, BOT_AVATAR], | |
show_copy_button=True, | |
likeable=True, | |
layout="bubble") | |
theme = gr.themes.Base( | |
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], | |
) | |
EXAMPLES = [ | |
[ "Tell me about the latest news in the world ?"], | |
[ "Tell me about the increase in the price of Bitcoin ?"], | |
[ "Tell me about the actual situation in Ukraine ?"], | |
[ "Tell me about current situation in palestine ?"], | |
] | |
max_new_tokens = gr.Slider( | |
minimum=1, | |
maximum=2048, | |
value=512, | |
step=1, | |
interactive=True, | |
label="Max new tokens", | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=0.9, | |
value=0.6, | |
step=0.1, | |
visible=True, | |
interactive=True, | |
label="Temperature", | |
info="Higher values will produce more diverse outputs.", | |
) | |
top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1, | |
value=0.9, | |
step=0.05, | |
visible=True, | |
interactive=True, | |
label="Top-p (nucleus sampling)", | |
info="Higher values is equivalent to sampling more low-probability tokens.", | |
) | |
with gr.Blocks( | |
fill_height=True, | |
css=""".gradio-container .avatar-container {height: 40px width: 40px !important;} #duplicate-button {margin: auto; color: white; background: #f1a139; border-radius: 100vh; margin-top: 2px; margin-bottom: 2px;}""", | |
) as main: | |
gr.ChatInterface( | |
chat, | |
chatbot=chatbot, | |
title="Retrieval Augmented Generation (RAG) Chatbot", | |
description="A chatbot that uses a RAG model to generate responses based on the input query.", | |
examples=EXAMPLES, | |
theme=theme, | |
fill_height=True, | |
multimodal=True, | |
additional_inputs=[ | |
max_new_tokens, | |
temperature, | |
top_p, | |
], | |
) | |
with gr.Blocks(theme=theme, css="footer {visibility: hidden}textbox{resize:none}", title="RAG") as demo: | |
gr.TabbedInterface([main] , tab_names=["Chatbot"] ) | |
demo.launch() | |