Spaces:
Sleeping
Sleeping
Kaung Myat Htet
commited on
Commit
•
bde0120
1
Parent(s):
b1ac1a0
add conversation history
Browse files- app.py +190 -57
- requirements.txt +4 -1
app.py
CHANGED
@@ -2,14 +2,22 @@ import os
|
|
2 |
import gradio as gr
|
3 |
from langchain_community.vectorstores import FAISS
|
4 |
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
|
|
|
5 |
|
|
|
6 |
from langchain_core.runnables.passthrough import RunnableAssign, RunnablePassthrough
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
from langchain_core.messages import get_buffer_string
|
9 |
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings
|
10 |
|
11 |
-
from langchain_core.prompts import ChatPromptTemplate
|
12 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
embedder = NVIDIAEmbeddings(model="nvolveqa_40k", model_type=None)
|
@@ -20,70 +28,195 @@ db = FAISS.load_local("vms_faiss_index", embedder, allow_dangerous_deserializati
|
|
20 |
nvidia_api_key = os.environ.get("NVIDIA_API_KEY", "")
|
21 |
|
22 |
|
23 |
-
from operator import itemgetter
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
llm = ChatNVIDIA(model="mixtral_8x7b") | StrOutputParser()
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
)
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
)
|
64 |
|
65 |
-
|
|
|
|
|
66 |
buffer = ""
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
print(
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
from langchain_community.vectorstores import FAISS
|
4 |
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
|
5 |
+
import pymongo
|
6 |
|
7 |
+
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
|
8 |
from langchain_core.runnables.passthrough import RunnableAssign, RunnablePassthrough
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
from langchain_core.messages import get_buffer_string
|
11 |
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings
|
12 |
|
13 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
14 |
from langchain_core.output_parsers import StrOutputParser
|
15 |
+
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
16 |
+
from langchain_core.chat_history import BaseChatMessageHistory
|
17 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
18 |
+
from langchain_community.chat_message_histories import ChatMessageHistory
|
19 |
+
from langchain_core.runnables.history import RunnableWithMessageHistory
|
20 |
+
from langchain_core.messages import HumanMessage
|
21 |
|
22 |
|
23 |
embedder = NVIDIAEmbeddings(model="nvolveqa_40k", model_type=None)
|
|
|
28 |
nvidia_api_key = os.environ.get("NVIDIA_API_KEY", "")
|
29 |
|
30 |
|
|
|
31 |
|
32 |
+
def get_mongo_client(mongo_uri):
|
33 |
+
"""Establish connection to the MongoDB."""
|
34 |
+
try:
|
35 |
+
client = pymongo.MongoClient(mongo_uri)
|
36 |
+
print("Connection to MongoDB successful")
|
37 |
+
return client
|
38 |
+
except pymongo.errors.ConnectionFailure as e:
|
39 |
+
print(f"Connection failed: {e}")
|
40 |
+
return None
|
41 |
|
42 |
+
mongo_uri = os.environ.get('MyCluster_MONGO_URI')
|
43 |
+
if not mongo_uri:
|
44 |
+
print("MONGO_URI not set in environment variables")
|
|
|
45 |
|
46 |
+
mongo_client = get_mongo_client(mongo_uri)
|
47 |
+
|
48 |
+
DB_NAME="vms_courses"
|
49 |
+
COLLECTION_NAME="courses"
|
50 |
+
|
51 |
+
db = mongo_client[DB_NAME]
|
52 |
+
collection = db[COLLECTION_NAME]
|
53 |
+
ATLAS_VECTOR_SEARCH_INDEX_NAME = "vector_index"
|
54 |
+
|
55 |
+
|
56 |
+
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
|
57 |
+
mongo_uri,
|
58 |
+
DB_NAME + "." + COLLECTION_NAME,
|
59 |
+
embedder,
|
60 |
+
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
|
61 |
)
|
62 |
|
63 |
+
|
64 |
+
llm = ChatNVIDIA(model="mixtral_8x7b")
|
65 |
+
|
66 |
+
retriever = vector_search.as_retriever(
|
67 |
+
search_type="similarity",
|
68 |
+
search_kwargs={"k": 12},
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
### Contextualize question ###
|
74 |
+
contextualize_q_system_prompt = """Given a chat history and the latest user question \
|
75 |
+
which might reference context in the chat history, formulate a standalone question \
|
76 |
+
which can be understood without the chat history. Do NOT answer the question, \
|
77 |
+
just reformulate it if needed and otherwise return it as is."""
|
78 |
+
contextualize_q_prompt = ChatPromptTemplate.from_messages(
|
79 |
+
[
|
80 |
+
("system", contextualize_q_system_prompt),
|
81 |
+
MessagesPlaceholder("chat_history"),
|
82 |
+
("human", "{input}"),
|
83 |
+
]
|
84 |
+
)
|
85 |
+
history_aware_retriever = create_history_aware_retriever(
|
86 |
+
llm, retriever, contextualize_q_prompt
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
### Answer question ###
|
91 |
+
qa_system_prompt = """You are a VMS assistant for helping students with their academic. \
|
92 |
+
Answer the question using only the context provided. Do not include based on the context or based on the documents provided in your answer. \
|
93 |
+
Please help them with their question. Remember that your job is to represent Vicent Mary School of Science and Technology (VMS) at Assumption University. \
|
94 |
+
Do not hallucinate any details, and make sure the knowledge base is not redundant.\
|
95 |
+
If you don't know the answer, just say that you don't know. \
|
96 |
+
|
97 |
+
{context}"""
|
98 |
+
|
99 |
+
qa_prompt = ChatPromptTemplate.from_messages(
|
100 |
+
[
|
101 |
+
("system", qa_system_prompt),
|
102 |
+
MessagesPlaceholder("chat_history"),
|
103 |
+
("human", "{input}"),
|
104 |
+
]
|
105 |
)
|
106 |
+
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
|
107 |
+
|
108 |
+
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
|
109 |
+
|
110 |
+
|
111 |
+
### Statefully manage chat history ###
|
112 |
+
store = {}
|
113 |
+
|
114 |
+
|
115 |
+
def get_session_history(session_id: str) -> BaseChatMessageHistory:
|
116 |
+
if session_id not in store:
|
117 |
+
store[session_id] = ChatMessageHistory()
|
118 |
+
return store[session_id]
|
119 |
|
120 |
+
|
121 |
+
conversational_rag_chain = RunnableWithMessageHistory(
|
122 |
+
rag_chain,
|
123 |
+
get_session_history,
|
124 |
+
input_messages_key="input",
|
125 |
+
history_messages_key="chat_history",
|
126 |
+
output_messages_key="answer",
|
127 |
)
|
128 |
|
129 |
+
c_history = []
|
130 |
+
|
131 |
+
def chat_gen(message, history):
|
132 |
buffer = ""
|
133 |
|
134 |
+
ai_message = rag_chain.invoke({"input": message, "chat_history": c_history})
|
135 |
+
c_history.extend([HumanMessage(content=message), ai_message["answer"]])
|
136 |
+
print(c_history)
|
137 |
+
yield ai_message["answer"]
|
138 |
+
|
139 |
+
# for doc in ai_message["context"]:
|
140 |
+
# yield doc
|
141 |
+
|
142 |
+
initial_msg = (
|
143 |
+
"Hello! I am VMS bot here to help you with your academic issues!"
|
144 |
+
f"\nHow can I help you?"
|
145 |
+
)
|
146 |
+
|
147 |
+
|
148 |
+
chatbot = gr.Chatbot(value = [[None, initial_msg]], bubble_full_width=False)
|
149 |
+
demo = gr.ChatInterface(chat_gen, chatbot=chatbot).queue()
|
150 |
+
|
151 |
+
try:
|
152 |
+
demo.launch(debug=True, share=True, show_api=False)
|
153 |
+
demo.close()
|
154 |
+
except Exception as e:
|
155 |
+
demo.close()
|
156 |
+
print(e)
|
157 |
+
raise e
|
158 |
+
|
159 |
+
# available models names
|
160 |
+
# mixtral_8x7b
|
161 |
+
# llama2_13b
|
162 |
+
# llm = ChatNVIDIA(model="mixtral_8x7b") | StrOutputParser()
|
163 |
+
|
164 |
+
# initial_msg = (
|
165 |
+
# "Hello! I am VMS bot here to help you with your academic issues!"
|
166 |
+
# f"\nHow can I help you?"
|
167 |
+
# )
|
168 |
+
|
169 |
+
# context_prompt = ChatPromptTemplate.from_messages([
|
170 |
+
# ('system',
|
171 |
+
# "You are a VMS chatbot, and you are helping students with their academic issues."
|
172 |
+
# "Answer the question using only the context provided. Do not include based on the context or based on the documents provided in your answer."
|
173 |
+
# "Please help them with their question. Remember that your job is to represent Vicent Mary School of Science and Technology (VMS) at Assumption University."
|
174 |
+
# "Do not hallucinate any details, and make sure the knowledge base is not redundant."
|
175 |
+
# "Please say you do not know if you do not know or you cannot find the information needed."
|
176 |
+
# "\n\nQuestion: {question}\n\nContext: {context}"),
|
177 |
+
# ('user', "{question}"
|
178 |
+
# )])
|
179 |
+
|
180 |
+
# chain = (
|
181 |
+
# {
|
182 |
+
# 'context': db.as_retriever(search_type="similarity"),
|
183 |
+
# 'question': (lambda x:x)
|
184 |
+
# }
|
185 |
+
# | context_prompt
|
186 |
+
# # | RPrint()
|
187 |
+
# | llm
|
188 |
+
# | StrOutputParser()
|
189 |
+
# )
|
190 |
+
|
191 |
+
# conv_chain = (
|
192 |
+
# context_prompt
|
193 |
+
# # | RPrint()
|
194 |
+
# | llm
|
195 |
+
# | StrOutputParser()
|
196 |
+
# )
|
197 |
+
|
198 |
+
# def chat_gen(message, history, return_buffer=True):
|
199 |
+
# buffer = ""
|
200 |
+
|
201 |
+
# doc_retriever = db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.2})
|
202 |
+
# retrieved_docs = doc_retriever.invoke(message)
|
203 |
+
# print(len(retrieved_docs))
|
204 |
+
# print(retrieved_docs)
|
205 |
+
|
206 |
+
# if len(retrieved_docs) > 0:
|
207 |
+
# state = {
|
208 |
+
# 'question': message,
|
209 |
+
# 'context': retrieved_docs
|
210 |
+
# }
|
211 |
+
# for token in conv_chain.stream(state):
|
212 |
+
# buffer += token
|
213 |
+
# yield buffer
|
214 |
+
# else:
|
215 |
+
# passage = "I am sorry. I do not have relevant information to answer on that specific topic. Please try another question."
|
216 |
+
# buffer += passage
|
217 |
+
# yield buffer if return_buffer else passage
|
218 |
+
|
219 |
+
|
220 |
+
# chatbot = gr.Chatbot(value = [[None, initial_msg]])
|
221 |
+
# iface = gr.ChatInterface(chat_gen, chatbot=chatbot).queue()
|
222 |
+
# iface.launch()
|
requirements.txt
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
langchain
|
2 |
langchain-nvidia-ai-endpoints
|
3 |
gradio
|
4 |
-
faiss-cpu
|
|
|
|
|
|
|
|
1 |
langchain
|
2 |
langchain-nvidia-ai-endpoints
|
3 |
gradio
|
4 |
+
faiss-cpu
|
5 |
+
pymongo
|
6 |
+
llama-index
|
7 |
+
llama-index-vector-stores-mongodb
|