Kaung Myat Htet commited on
Commit
e249f66
·
1 Parent(s): 77e2b81

initialize project

Browse files
Files changed (3) hide show
  1. .gitignore +3 -0
  2. app.py +84 -0
  3. requirements.txt +6 -0
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ __pycache__
2
+ .DS_Store
3
+ faiss_index/*
app.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from langchain_community.vectorstores import FAISS
3
+ from langchain_mongodb.chat_message_histories import MongoDBChatMessageHistory
4
+ from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA
5
+ from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
6
+ from langchain_core.messages import HumanMessage
7
+ from langchain_core.runnables.history import RunnableWithMessageHistory
8
+ import gradio as gr
9
+ import time
10
+
11
+
12
+ embedder = NVIDIAEmbeddings(model="NV-Embed-QA", model_type=None)
13
+ db = FAISS.load_local("faiss_index", embedder, allow_dangerous_deserialization=True)
14
+ model = ChatNVIDIA(model="meta/llama3-70b-instruct")
15
+
16
+ retriever = db.as_retriever(search_kwargs={"k": 8})
17
+
18
+ retrieved_docs = retriever.invoke("Seafood restaurants in Phuket")
19
+ print(len(retrieved_docs))
20
+ for doc in retrieved_docs:
21
+ print(doc.metadata)
22
+
23
+
24
+
25
+ def get_session_history(session_id):
26
+ return MongoDBChatMessageHistory(
27
+ session_id=session_id,
28
+ connection_string=os.environ["MONGODB_URI"],
29
+ database_name="tour_planner_db",
30
+ collection_name="chat_histories",
31
+ )
32
+
33
+
34
+ prompt = ChatPromptTemplate.from_messages(
35
+ [
36
+ ("system", """
37
+ ### [INST] Instruction: Answer the question based on your knowledge about places in Thailand. You are Roam Mate which is a chat bot to help users with their travel and recommending places according to their reference. Here is context to help:
38
+ Also provides your rationale for generating the places you are recommending.
39
+ Context:\n{context}\n
40
+ (Answer from retrieval if they are relevant to the question. Only cite sources that are used. Make your response conversational.)
41
+
42
+
43
+ ### QUESTION:
44
+ {question} [/INST]
45
+ """),
46
+ MessagesPlaceholder(variable_name="history")
47
+ ]
48
+ )
49
+
50
+ runnable = prompt | model
51
+
52
+ runnable_with_history = RunnableWithMessageHistory(
53
+ runnable,
54
+ get_session_history,
55
+ input_messages_key="question",
56
+ history_messages_key="history",
57
+ )
58
+
59
+ initial_msg = (
60
+ "Hello! I am a chatbot to help with vacation."
61
+ f"\nHow can I help you?"
62
+ )
63
+
64
+ def chat_gen(message, history, session_id, return_buffer=True):
65
+ print(session_id)
66
+ buffer = ""
67
+ for token in runnable_with_history.stream(
68
+ {"question": message, "context": db.as_retriever(search_type="similarity", search_kwargs={"k": 5})},
69
+ config={"configurable": {"session_id": session_id}},
70
+ ):
71
+ buffer += token.content
72
+ time.sleep(0.05)
73
+ yield buffer
74
+
75
+ with gr.Blocks(fill_height=True) as demo:
76
+ session_id = gr.Textbox("1", label="Session ID")
77
+ chatbot = gr.Chatbot(value = [[None, initial_msg]], bubble_full_width=True, scale=1)
78
+ gr.ChatInterface(chat_gen, chatbot=chatbot, additional_inputs=[session_id]).queue()
79
+
80
+
81
+ if __name__ == "__main__":
82
+ demo.launch()
83
+
84
+
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ langchain
2
+ langchain-community
3
+ faiss-cpu
4
+ flashrank
5
+ langchain-nvidia-ai-endpoints
6
+ langchain-mongodb